Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Foteini Mourkioti is active.

Publication


Featured researches published by Foteini Mourkioti.


Proceedings of the National Academy of Sciences of the United States of America | 2009

A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair.

Daniela Ruffell; Foteini Mourkioti; Adriana Gambardella; Peggy Kirstetter; Rodolphe G. Lopez; Nadia Rosenthal; Claus Nerlov

Macrophages play an essential role in the resolution of tissue damage through removal of necrotic cells, thus paving the way for tissue regeneration. Macrophages also directly support the formation of new tissue to replace the injury, through their acquisition of an anti-inflammatory, or M2, phenotype, characterized by a gene expression program that includes IL-10, the IL-13 receptor, and arginase 1. We report that deletion of two CREB-binding sites from the Cebpb promoter abrogates Cebpb induction upon macrophage activation. This blocks the downstream induction of M2-specific Msr1, Il10, II13ra, and Arg-1 genes, whereas the inflammatory (M1) genes Il1, Il6, Tnfa, and Il12 are not affected. Mice carrying the mutated Cebpb promoter (βΔCre) remove necrotic tissue from injured muscle, but exhibit severe defects in muscle fiber regeneration. Conditional deletion of the Cebpb gene in muscle cells does not affect regeneration, showing that the C/EBPβ cascade leading to muscle repair is muscle-extrinsic. While βΔCre macrophages efficiently infiltrate injured muscle they fail to upregulate Cebpb, leading to decreased Arg-1 expression. CREB-mediated induction of Cebpb expression is therefore required in infiltrating macrophages for upregulation of M2-specific genes and muscle regeneration, providing a direct genetic link between these two processes.


Nature Medicine | 2014

Rejuvenation of the muscle stem cell population restores strength to injured aged muscles

Benjamin D. Cosgrove; Penney M. Gilbert; Ermelinda Porpiglia; Foteini Mourkioti; Steven P Lee; Stéphane Y. Corbel; Michael E. Llewellyn; Scott L. Delp; Helen M. Blau

The elderly often suffer from progressive muscle weakness and regenerative failure. We demonstrate that muscle regeneration is impaired with aging owing in part to a cell-autonomous functional decline in skeletal muscle stem cells (MuSCs). Two-thirds of MuSCs from aged mice are intrinsically defective relative to MuSCs from young mice, with reduced capacity to repair myofibers and repopulate the stem cell reservoir in vivo following transplantation. This deficiency is correlated with a higher incidence of cells that express senescence markers and is due to elevated activity of the p38α and p38β mitogen-activated kinase pathway. We show that these limitations cannot be overcome by transplantation into the microenvironment of young recipient muscles. In contrast, subjecting the MuSC population from aged mice to transient inhibition of p38α and p38β in conjunction with culture on soft hydrogel substrates rapidly expands the residual functional MuSC population from aged mice, rejuvenating its potential for regeneration and serial transplantation as well as strengthening of damaged muscles of aged mice. These findings reveal a synergy between biophysical and biochemical cues that provides a paradigm for a localized autologous muscle stem cell therapy for the elderly.


Journal of Clinical Investigation | 2006

Targeted ablation of IKK2 improves skeletal muscle strength, maintains mass, and promotes regeneration

Foteini Mourkioti; Paschalis Kratsios; Tom Luedde; Yao-Hua Song; Patrick Delafontaine; Raffaella Adami; Valeria Parente; Roberto Bottinelli; Manolis Pasparakis; Nadia Rosenthal

NF-kappaB is a major pleiotropic transcription factor modulating immune, inflammatory, cell survival, and proliferative responses, yet the relevance of NF-kappaB signaling in muscle physiology and disease is less well documented. Here we show that muscle-restricted NF-kappaB inhibition in mice, through targeted deletion of the activating kinase inhibitor of NF-kappaB kinase 2 (IKK2), shifted muscle fiber distribution and improved muscle force. In response to denervation, IKK2 depletion protected against atrophy, maintaining fiber type, size, and strength, increasing protein synthesis, and decreasing protein degradation. IKK2-depleted mice with a muscle-specific transgene expressing a local Igf-1 isoform (mIgf-1) showed enhanced protection against muscle atrophy. In response to muscle damage, IKK2 depletion facilitated skeletal muscle regeneration through enhanced satellite cell activation and reduced fibrosis. Our results establish IKK2/NF-kappaB signaling as an important modulator of muscle homeostasis and suggest a combined role for IKK inhibitors and growth factors in the therapy of muscle diseases.


EMBO Reports | 2002

Mapping and identification of essential gene functions on the X chromosome of Drosophila

Annette Peter; Petra Schöttler; Meike Werner; Nicole Beinert; Gordon Dowe; Peter Burkert; Foteini Mourkioti; Lore Dentzer; Yuchun He; Peter Deak; Panayiotis V. Benos; Melanie K. Gatt; Lee Murphy; David Harris; Bart Barrell; Concepcion Ferraz; Sophie Vidal; C. Brun; Jacques Demaille; Edouard Cadieu; Stéphane Dréano; Stéphanie Gloux; Valérie Lelaure; Stéphanie Mottier; Francis Galibert; Dana Borkova; Belén Miñana; Fotis C. Kafatos; Slava Bolshakov; Inga Siden-Kiamos

The Drosophila melanogaster genome consists of four chromosomes that contain 165 Mb of DNA, 120 Mb of which are euchromatic. The two Drosophila Genome Projects, in collaboration with Celera Genomics Systems, have sequenced the genome, complementing the previously established physical and genetic maps. In addition, the Berkeley Drosophila Genome Project has undertaken large‐scale functional analysis based on mutagenesis by transposable P element insertions into autosomes. Here, we present a large‐scale P element insertion screen for vital gene functions and a BAC tiling map for the X chromosome. A collection of 501 X‐chromosomal P element insertion lines was used to map essential genes cytogenetically and to establish short sequence tags (STSs) linking the insertion sites to the genome. The distribution of the P element integration sites, the identified genes and transcription units as well as the expression patterns of the P‐element‐tagged enhancers is described and discussed.


Journal of Molecular Medicine | 2008

NF-κB signaling in skeletal muscle: prospects for intervention in muscle diseases

Foteini Mourkioti; Nadia Rosenthal

Muscle remodeling is an important physiological process that promotes adaptive changes in cytoarchitecture and protein composition after exercise, aging, or disease conditions. Numerous transcription factors have been reported to regulate skeletal muscle homeostasis. NF-κB is a major pleiotropic transcription factor modulating immune, inflammatory, cell survival, and proliferating responses; however, its role in muscle development, physiology, and disease has just started to be elucidated. The current review article aims to summarize the literature on the role of NF-κB signaling in skeletal muscle pathophysiology, investigated over the last years using in vitro and more recently in vivo systems. Understanding the exact role of NF-κB in muscle cells will allow better therapeutic manipulations in the setting of human muscle diseases.


Circulation Research | 2010

Distinct Roles for Cell-Autonomous Notch Signaling in Cardiomyocytes of the Embryonic and Adult Heart

Pachalis Kratsios; Catarina Catela; Ekaterina Salimova; Marion Huth; Valeria Berno; Nadia Rosenthal; Foteini Mourkioti

Rationale: The Notch signaling pathway is important for cell-cell communication that controls tissue formation and homeostasis during embryonic and adult life, but the precise cell targets of Notch signaling in the mammalian heart remain poorly defined. Objective: To investigate the functional role of Notch signaling in the cardiomyocyte compartment of the embryonic and adult heart. Methods and Results: Here, we report that either conditional overexpression of Notch1 intracellular domain (NICD1) or selective silencing of Notch signaling in the embryonic cardiomyocyte compartment results in developmental defects and perinatal lethality. In contrast, augmentation of endogenous Notch reactivation after myocardial infarction in the adult, either by inducing cardiomyocyte-specific Notch1 transgene expression or by intramyocardial delivery of a Notch1 pseudoligand, increases survival rate, improves cardiac functional performance, and minimizes fibrosis, promoting antiapoptotic and angiogenic mechanisms. Conclusions: These results reveal a strict requirement for cell-autonomous modulation of Notch signaling during heart morphogenesis, and illustrate how the same signaling pathway that promotes congenital heart defects when perturbed in the embryo can be therapeutically redeployed for the treatment of adult myocardial damage.


Nature Cell Biology | 2013

Role of telomere dysfunction in cardiac failure in Duchenne muscular dystrophy

Foteini Mourkioti; Jackie Kustan; Peggy E. Kraft; John W. Day; Ming Ming Zhao; Maria Kost-Alimova; Alexei Protopopov; Ronald A. DePinho; Daniel Bernstein; Alan K. Meeker; Helen M. Blau

Duchenne muscular dystrophy (DMD), the most common inherited muscular dystrophy of childhood, leads to death due to cardiorespiratory failure. Paradoxically, mdx mice with the same genetic deficiency of dystrophin exhibit minimal cardiac dysfunction, impeding the development of therapies. We postulated that the difference between mdx and DMD might result from differences in telomere lengths in mice and humans. We show here that, like DMD patients, mice that lack dystrophin and have shortened telomeres (mdx/mTRKO) develop severe functional cardiac deficits including ventricular dilation, contractile and conductance dysfunction, and accelerated mortality. These cardiac defects are accompanied by telomere erosion, mitochondrial fragmentation and increased oxidative stress. Treatment with antioxidants significantly retards the onset of cardiac dysfunction and death of mdx/mTRKO mice. In corroboration, all four of the DMD patients analysed had 45% shorter telomeres in their cardiomyocytes relative to age- and sex-matched controls. We propose that the demands of contraction in the absence of dystrophin coupled with increased oxidative stress conspire to accelerate telomere erosion culminating in cardiac failure and death. These findings provide strong support for a link between telomere length and dystrophin deficiency in the etiology of dilated cardiomyopathy in DMD and suggest preventive interventions.


Cell Metabolism | 2016

Loss of NAD Homeostasis Leads to Progressive and Reversible Degeneration of Skeletal Muscle

David W. Frederick; Emanuele Loro; Ling Liu; Antonio Davila; Karthikeyani Chellappa; Ian M. Silverman; William J. Quinn; Sager J. Gosai; Elisia D. Tichy; James G. Davis; Foteini Mourkioti; Brian D. Gregory; Ryan Dellinger; Philip Redpath; Marie E. Migaud; Eiko Nakamaru-Ogiso; Joshua D. Rabinowitz; Tejvir S. Khurana; Joseph A. Baur

NAD is an obligate co-factor for the catabolism of metabolic fuels in all cell types. However, the availability of NAD in several tissues can become limited during genotoxic stress and the course of natural aging. The point at which NAD restriction imposes functional limitations on tissue physiology remains unknown. We examined this question in murine skeletal muscle by specifically depleting Nampt, an essential enzyme in the NAD salvage pathway. Knockout mice exhibited a dramatic 85% decline in intramuscular NAD content, accompanied by fiber degeneration and progressive loss of both muscle strength and treadmill endurance. Administration of the NAD precursor nicotinamide riboside rapidly ameliorated functional deficits and restored muscle mass despite having only a modest effect on the intramuscular NAD pool. Additionally, lifelong overexpression of Nampt preserved muscle NAD levels and exercise capacity in aged mice, supporting a critical role for tissue-autonomous NAD homeostasis in maintaining muscle mass and function.


Journal of Cell Biology | 2007

A naturally occurring calcineurin variant inhibits FoxO activity and enhances skeletal muscle regeneration.

Enrique Lara-Pezzi; Nadine Winn; Angelika Paul; Karl J. A. McCullagh; Esfir Slominsky; Maria Paola Santini; Foteini Mourkioti; Padmini Sarathchandra; Satsuki Fukushima; Ken Suzuki; Nadia Rosenthal

The calcium-activated phosphatase calcineurin (Cn) transduces physiological signals through intracellular pathways to influence the expression of specific genes. Here, we characterize a naturally occurring splicing variant of the CnAβ catalytic subunit (CnAβ1) in which the autoinhibitory domain that controls enzyme activation is replaced with a unique C-terminal region. The CnAβ1 enzyme is constitutively active and dephosphorylates its NFAT target in a cyclosporine-resistant manner. CnAβ1 is highly expressed in proliferating myoblasts and regenerating skeletal muscle fibers. In myoblasts, CnAβ1 knockdown activates FoxO-regulated genes, reduces proliferation, and induces myoblast differentiation. Conversely, CnAβ1 overexpression inhibits FoxO and prevents myotube atrophy. Supplemental CnAβ1 transgene expression in skeletal muscle leads to enhanced regeneration, reduced scar formation, and accelerated resolution of inflammation. This unique mode of action distinguishes the CnAβ1 isoform as a candidate for interventional strategies in muscle wasting treatment.


Journal of Clinical Investigation | 2017

Long telomeres protect against age-dependent cardiac disease caused by NOTCH1 haploinsufficiency

Christina V. Theodoris; Foteini Mourkioti; Yu Huang; Sanjeev S. Ranade; Lei Liu; Helen M. Blau; Deepak Srivastava

Diseases caused by gene haploinsufficiency in humans commonly lack a phenotype in mice that are heterozygous for the orthologous factor, impeding the study of complex phenotypes and critically limiting the discovery of therapeutics. Laboratory mice have longer telomeres relative to humans, potentially protecting against age-related disease caused by haploinsufficiency. Here, we demonstrate that telomere shortening in NOTCH1-haploinsufficient mice is sufficient to elicit age-dependent cardiovascular disease involving premature calcification of the aortic valve, a phenotype that closely mimics human disease caused by NOTCH1 haploinsufficiency. Furthermore, progressive telomere shortening correlated with severity of disease, causing cardiac valve and septal disease in the neonate that was similar to the range of valve disease observed within human families. Genes that were dysregulated due to NOTCH1 haploinsufficiency in mice with shortened telomeres were concordant with proosteoblast and proinflammatory gene network alterations in human NOTCH1 heterozygous endothelial cells. These dysregulated genes were enriched for telomere-contacting promoters, suggesting a potential mechanism for telomere-dependent regulation of homeostatic gene expression. These findings reveal a critical role for telomere length in a mouse model of age-dependent human disease and provide an in vivo model in which to test therapeutic candidates targeting the progression of aortic valve disease.

Collaboration


Dive into the Foteini Mourkioti's collaboration.

Top Co-Authors

Avatar

Nadia Rosenthal

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Elisia D. Tichy

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan K. Meeker

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

David K. Sidibe

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge