Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas M. Oyster is active.

Publication


Featured researches published by Nicholas M. Oyster.


Journal of Biological Chemistry | 2006

AMP-activated kinase inhibits the epithelial Na- channel through functional regulation of the ubiquitin ligase Nedd4-2

Vivek Bhalla; Nicholas M. Oyster; Adam Fitch; Marjolein A. Wijngaarden; Dietbert Neumann; Uwe Schlattner; David A. Pearce; Kenneth R. Hallows

We recently found that the metabolic sensor AMP-activated kinase (AMPK) inhibits the epithelial Na+ channel (ENaC) through decreased plasma membrane ENaC expression, an effect requiring the presence of a binding motif in the cytoplasmic tail of the β-ENaC subunit for the ubiquitin ligase Nedd4-2. To further examine the role of Nedd4-2 in the regulation of ENaC by AMPK, we studied the effects of AMPK activation on ENaC currents in Xenopus oocytes co-expressing ENaC and wild-type (WT) or mutant forms of Nedd4-2. ENaC inhibition by AMPK was preserved in oocytes expressing WT Nedd4-2 but blocked in oocytes expressing either a dominant-negative (DN) or constitutively active (CA) Nedd4-2 mutant, suggesting that AMPK-dependent modulation of Nedd4-2 function is involved. Similar experiments utilizing WT or mutant forms of the serum- and glucocorticoid-regulated kinase (SGK1), modulators of protein kinase A (PKA), or extracellular-regulated kinase (ERK) did not affect ENaC inhibition by AMPK, suggesting that these pathways known to modulate the Nedd4-2-ENaC interaction are not responsible. AMPK-dependent phosphorylation of Nedd4-2 expressed in HEK-293 cells occurred both in vitro and in vivo, suggesting a potential mechanism for modulation of Nedd4-2 and thus cellular ENaC activity. Moreover, cellular AMPK activation significantly enhanced the interaction of the β-ENaC subunit with Nedd4-2, as measured by co-immunoprecipitation assays in HEK-293 cells. In summary, these results suggest a novel mechanism for ENaC regulation in which AMPK promotes ENaC-Nedd4-2 interaction, thereby inhibiting ENaC by increasing Nedd4-2-dependent ENaC retrieval from the plasma membrane. AMPK-dependent ENaC inhibition may limit cellular Na+ loading under conditions of metabolic stress when AMPK becomes activated.


American Journal of Respiratory Cell and Molecular Biology | 2010

AMPK agonists ameliorate sodium and fluid transport and inflammation in cystic fibrosis airway epithelial cells.

Michael M. Myerburg; J Darwin King; Nicholas M. Oyster; Adam Fitch; Amy Magill; Catherine J. Baty; Simon C. Watkins; Jay K. Kolls; Joseph M. Pilewski; Kenneth R. Hallows

The metabolic sensor AMP-activated kinase (AMPK) inhibits both the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) Cl(-) channel and epithelial Na(+) channel (ENaC), and may inhibit secretion of proinflammatory cytokines in epithelia. Here we have tested in primary polarized CF and non-CF human bronchial epithelial (HBE) cells the effects of AMPK activators, metformin and 5-aminoimidazole-4-carboxamide-1-beta-D-riboside (AICAR), on various parameters that contribute to CF lung disease: ENaC-dependent short-circuit currents (I(sc)), airway surface liquid (ASL) height, and proinflammatory cytokine secretion. AMPK activation after overnight treatment with either metformin (2-5 mM) or AICAR (1 mM) substantially inhibited ENaC-dependent I(sc) in both CF and non-CF airway cultures. Live-cell confocal images acquired 60 minutes after apical addition of Texas Red-dextran-containing fluid revealed significantly greater ASL heights after AICAR and metformin treatment relative to controls, suggesting that AMPK-dependent ENaC inhibition slows apical fluid reabsorption. Both metformin and AICAR decreased secretion of various proinflammatory cytokines, both with and without prior LPS stimulation. Finally, prolonged exposure to more physiologically relevant concentrations of metformin (0.03-1 mM) inhibited ENaC currents and decreased proinflammatory cytokine levels in CF HBE cells in a dose-dependent manner. These findings suggest that novel therapies to activate AMPK in the CF airway may be beneficial by blunting excessive sodium and ASL absorption and by reducing excessive airway inflammation, which are major contributors to CF lung disease.


Journal of Biological Chemistry | 2009

Regulation of Epithelial Na+ Transport by Soluble Adenylyl Cyclase in Kidney Collecting Duct Cells

Kenneth R. Hallows; Huamin Wang; Robert S. Edinger; Michael B. Butterworth; Nicholas M. Oyster; Hui Li; Jochen Buck; Lonny R. Levin; John P. Johnson; Núria M. Pastor-Soler

Alkalosis impairs the natriuretic response to diuretics, but the underlying mechanisms are unclear. The soluble adenylyl cyclase (sAC) is a chemosensor that mediates bicarbonate-dependent elevation of cAMP in intracellular microdomains. We hypothesized that sAC may be an important regulator of Na+ transport in the kidney. Confocal images of rat kidney revealed specific immunolocalization of sAC in collecting duct cells, and immunoblots confirmed sAC expression in mouse cortical collecting duct (mpkCCDc14) cells. These cells exhibit aldosterone-stimulated transepithelial Na+ currents that depend on both the apical epithelial Na+ channel (ENaC) and basolateral Na+,K+-ATPase. RNA interference-mediated 60-70% knockdown of sAC expression comparably inhibited basal transepithelial short circuit currents (Isc) in mpkCCDc14 cells. Moreover, the sAC inhibitors KH7 and 2-hydroxyestradiol reduced Isc in these cells by 50-60% within 30 min. 8-Bromoadenosine-3′,5′-cyclic-monophosphate substantially rescued the KH7 inhibition of transepithelial Na+ current. Aldosterone doubled ENaC-dependent Isc over 4 h, an effect that was abolished in the presence of KH7. The sAC contribution to Isc was unaffected with apical membrane nystatin-mediated permeabilization, whereas the sAC-dependent Na+ current was fully inhibited by basolateral ouabain treatment, suggesting that the Na+,K+-ATPase, rather than ENaC, is the relevant transporter target of sAC. Indeed, neither overexpression of sAC nor treatment with KH7 modulated ENaC currents in Xenopus oocytes. ATPase and biotinylation assays in mpkCCDc14 cells demonstrated that sAC inhibition decreases catalytic activity rather than surface expression of the Na+,K+-ATPase. In summary, these results suggest that sAC regulates both basal and agonist-stimulated Na+ reabsorption in the kidney collecting duct, acting to enhance Na+,K+-ATPase activity.


Acta Biomaterialia | 2009

Diffusion of soluble factors through degradable polymer nerve guides: Controlling manufacturing parameters.

Lauren E. Kokai; Yen-Chih Lin; Nicholas M. Oyster; Kacey G. Marra

Nerve guides are cylindrical conduits of either biologically based or synthetic materials that are used to bridge nerve defects. While it is well known that a critical aspect of nerve regeneration is the delivery of oxygen and nutrients to the surviving nerve tissue, several guide parameters that determine the permeability of nerve guides to nutrients are often overlooked. We have reproducibly manufactured poly(caprolactone) (PCL) nerve guides of tailored porosity percentage, wall thickness and pore diameter through a dip-coating/salt-leaching technique. In this study, these three parameters were varied to measure the response of glucose and lysozyme diffusion through the guide wall. In addition, nerve guide permeability following protein fouling studies was examined. Based on the results from this study, it was determined that at high porosity percentages (80%), decreasing the pore diameter (10-38microm) was a measurable method of decreasing the lysozyme permeability of PCL nerve guides while not creating a loss of glucose permeability. PCL fouling studies were used to fine-tune the desirable nerve guide wall thickness. Results indicated that nerve guides 0.6mm thick decreased the loss of lysozyme to almost 10% without significantly diminishing glucose (nutrient) permeability. These results will be utilized to optimize nerve guide parameters for future in vivo applications.


Journal of Biological Chemistry | 2010

Phosphopeptide screen uncovers novel phosphorylation sites of Nedd4-2 that potentiate its inhibition of the epithelial Na+ channel.

Kenneth R. Hallows; Vivek Bhalla; Nicholas M. Oyster; Marjolein A. Wijngaarden; Jeffrey K. Lee; Hui Li; Sindhu Chandran; Xiaoyu Xia; Zhirong Huang; Robert J. Chalkley; Alma L. Burlingame; David A. Pearce

The E3 ubiquitin ligase Nedd4-2 regulates several ion transport proteins, including the epithelial Na+ channel (ENaC). Nedd4-2 decreases apical membrane expression and activity of ENaC. Although it is subject to tight hormonal control, the mechanistic basis of Nedd4-2 regulation remains poorly understood. To characterize regulatory inputs to Nedd4-2 function, we screened for novel sites of Nedd4-2 phosphorylation using tandem mass spectrometry. Three of seven identified Xenopus Nedd4-2 Ser/Thr phosphorylation sites corresponded to previously identified target sites for SGK1, whereas four were novel, including Ser-293, which matched the consensus for a MAPK target sequence. Further in vitro and in vivo phosphorylation experiments revealed that Nedd4-2 serves as a target of JNK1, but not of p38 MAPK or ERK1/2. Additional rounds of tandem mass spectrometry identified two other phosphorylated residues within Nedd4-2, including Thr-899, which is present within the catalytic domain. Nedd4-2 with mutations at these sites had markedly inhibited JNK1-dependent phosphorylation, virtually no ENaC inhibitory activity, and significantly reduced ubiquitin ligase activity. These data identify phosphorylatable residues that activate Nedd4-2 and may work together with residues targeted by inhibitory kinases (e.g. SGK1 and protein kinase A) to govern Nedd4-2 regulation of epithelial ion transport.


Human Molecular Genetics | 2014

Rapid depletion of muscle progenitor cells in dystrophic mdx/utrophin−/− mice

Aiping Lu; Minakshi Poddar; Ying Tang; Jonathan D. Proto; Jihee Sohn; Xiaodong Mu; Nicholas M. Oyster; Bing Wang; Johnny Huard

Duchenne muscular dystrophy (DMD) patients lack dystrophin from birth; however, muscle weakness becomes apparent only at 3-5 years of age, which happens to coincide with the depletion of the muscle progenitor cell (MPC) pools. Indeed, MPCs isolated from older DMD patients demonstrate impairments in myogenic potential. To determine whether the progression of muscular dystrophy is a consequence of the decline in functional MPCs, we investigated two animal models of DMD: (i) dystrophin-deficient mdx mice, the most commonly utilized model of DMD, which has a relatively mild dystrophic phenotype and (ii) dystrophin/utrophin double knock-out (dKO) mice, which display a similar histopathologic phenotype to DMD patients. In contrast to age-matched mdx mice, we observed that both the number and regeneration potential of dKO MPCs rapidly declines during disease progression. This occurred in MPCs at both early and late stages of myogenic commitment. In fact, early MPCs isolated from 6-week-old dKO mice have reductions in proliferation, resistance to oxidative stress and multilineage differentiation capacities compared with age-matched mdx MPCs. This effect may potentially be mediated by fibroblast growth factor overexpression and/or a reduction in telomerase activity. Our results demonstrate that the rapid disease progression in the dKO model is associated, at least in part, with MPC depletion. Therefore, alleviating MPC depletion could represent an approach to delay the onset of the histopathologies associated with DMD patients.


Scientific Reports | 2017

Projection Stereolithographic Fabrication of BMP-2 Gene-activated Matrix for Bone Tissue Engineering

Hang Lin; Ying Tang; Thomas P. Lozito; Nicholas M. Oyster; Robert B. Kang; Madalyn R. Fritch; Bing Wang; Rocky S. Tuan

Currently, sustained in vivo delivery of active bone morphogenetic protein-2 (BMP-2) protein to responsive target cells, such as bone marrow-derived mesenchymal stem cells (BMSCs), remains challenging. Ex vivo gene transfer method, while efficient, requires additional operation for cell culture and therefore, is not compatible with point-of-care treatment. In this study, two lentiviral gene constructs – (1) Lv-BMP/GFP, containing human BMP-2 and green fluorescent protein (GFP) gene (BMP group); or (2) Lv-GFP, containing GFP gene (GFP group) – were incorporated with human BMSCs into a solution of photocrosslinkable gelatin, which was then subjected to visible light-based projection stereolithographic printing to form a scaffold with desired architectures. Upon in vitro culture, compared to the GFP group, cells from BMP group showed >1,000-fold higher BMP-2 release, and the majority of them stained intensely for alkaline phosphatase activity. Real-time RT-PCR also showed dramatically increased expression of osteogenesis marker genes only in the BMP group. 3.5 months post-implantation into SCID mice, the micro-computed tomography imaging showed detectable mineralized areas only in the BMP group, which was restricted within the scaffolds. Alizarin red staining and immunohistochemistry of GFP and osteocalcin further indicated that the grafted hBMSCs, not host cells, contributed primarily to the newly formed bone.


The FASEB Journal | 2010

Phosphopeptide Screen Uncovers JNK1 as a Potentiator of Nedd4-2-Mediated Epithelial Na+ Channel Inhibition

Vivek Bhalla; Nicholas M. Oyster; Marjolein A. Wijngaarden; Jeffrey E. Lee; Hui Li; Xiaoyu Xia; Zhirong Huang; Robert J. Chalkley; Alma L. Burlingame; David A. Pearce; Ken Hallows


The FASEB Journal | 2008

Novel Regulation of the Epithelial Na+ Channel by Soluble Adenylyl Cyclase in Kidney Collecting Duct Cells

Kenneth R. Hallows; Núria M. Pastor-Soler; Robert S. Edinger; Nicholas M. Oyster; Huamin Wang; Jochen Buck; Lonny R. Levin; John P. Johnson


The FASEB Journal | 2006

Inhibition of the Epithelial Sodium Channel by AMP-Activated Kinase Involves Modulation of Nedd4-2 Activity

Kenneth R. Hallows; Nicholas M. Oyster; Vivek Bhalla; David A. Pearce

Collaboration


Dive into the Nicholas M. Oyster's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marjolein A. Wijngaarden

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Adam Fitch

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Hui Li

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bing Wang

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge