Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fotouh M. El-Domyati is active.

Publication


Featured researches published by Fotouh M. El-Domyati.


Comptes Rendus Biologies | 2015

RNA-Seq analysis of the wild barley (H. spontaneum) leaf transcriptome under salt stress

Ahmed Bahieldin; Ahmed Atef; Jamal S. M. Sabir; Nour O. Gadalla; Sherif Edris; Ahmed M. Alzohairy; Nezar A. Radhwan; Mohammed N. Baeshen; Ahmed M. Ramadan; Hala F. Eissa; Sabah M. Hassan; Nabih A. Baeshen; Osama A. Abuzinadah; Magdy A. Al-Kordy; Fotouh M. El-Domyati; Robert K. Jansen

Wild salt-tolerant barley (Hordeum spontaneum) is the ancestor of cultivated barley (Hordeum vulgare or H.xa0vulgare). Although the cultivated barley genome is well studied, little is known about genome structure and function of its wild ancestor. In the present study, RNA-Seq analysis was performed on young leaves of wild barley treated with salt (500mM NaCl) at four different time intervals. Transcriptome sequencing yielded 103 to 115 million reads for all replicates of each treatment, corresponding to over 10 billion nucleotides per sample. Of the total reads, between 74.8 and 80.3% could be mapped and 77.4 to 81.7% of the transcripts were found in the H.xa0vulgare unigene database (unigene-mapped). The unmapped wild barley reads for all treatments and replicates were assembled de novo and the resulting contigs were used as a new reference genome. This resulted in 94.3 to 95.3% of the unmapped reads mapping to the new reference. The number of differentially expressed transcripts was 9277, 3861 of which were unigene-mapped. The annotated unigene- and de novo-mapped transcripts (5100) were utilized to generate expression clusters across time of salt stress treatment. Two-dimensional hierarchical clustering classified differential expression profiles into nine expression clusters, four of which were selected for further analysis. Differentially expressed transcripts were assigned to the main functional categories. The most important groups were response to external stimulus and electron-carrier activity. Highly expressed transcripts are involved in several biological processes, including electron transport and exchanger mechanisms, flavonoid biosynthesis, reactive oxygen species (ROS) scavenging, ethylene production, signaling network and protein refolding. The comparisons demonstrated that mRNA-Seq is an efficient method for the analysis of differentially expressed genes and biological processes under salt stress.


Comptes Rendus Biologies | 2014

Characterization of ten date palm (Phoenix dactylifera L.) cultivars from Saudi Arabia using AFLP and ISSR markers.

Jamal S. M. Sabir; Salah Abo-Aba; Sameera Bafeel; Talal A. Zari; Sherif Edris; Ahmed M. Shokry; Ahmed Atef; Nour O. Gadalla; Ahmed M. Ramadan; Magdy A. Al-Kordy; Fotouh M. El-Domyati; Robert K. Jansen; Ahmed Bahieldin

Date palm is the most economically important plant in the Middle East due to its nutritionally valuable fruit. The development of accurate DNA fingerprints to characterize cultivars and the detection of genetic diversity are of great value for breeding programs. The present study explores the usefulness of ISSR and AFLP molecular markers to detect relationships among 10 date palm (Phoenix dactylifera L.) cultivars from Saudi Arabia. Thirteen ISSR primers and six AFLP primer combinations were examined. The level of polymorphism among cultivars for ISSRs ranged from 20% to 100% with an average of 85%. Polymorphism levels for AFLPs ranged from 63% to 84% with an average of 76%. The total number of cultivar-specific markers was 241, 208 of which were generated from AFLP analysis. AJWA cultivar had the highest number of cultivar-specific ISSR markers, whereas DEK, PER, SUK-Q, SHA and MOS-H cultivars had the lowest. RAB and SHA cultivars had the most and least AFLP cultivar-specific markers, respectively. The highest pairwise similarity indices for ISSRs, AFLPs and combined markers were 84% between DEK (female) and PER (female), 81% between SUK-Q (male) and RAB (male), and 80% between SUK-Q (male) and RAB (male), respectively. The lowest similarity indices were 65% between TAB (female) and SUK-Q (male), 67% between SUK-A (female) and SUK-Q (male), and 67% between SUK-A (female) and SUK-Q (male). Cultivars of the same sex had higher pairwise similarities than those between cultivars of different sex. The Neighbor-Joining (NJ) tree generated from the ISSR dataset was not well resolved and bootstrap support for resolved nodes in the tree was low. AFLP and combined data generated completely resolved trees with high levels of bootstrap support. In conclusion, AFLP and ISSR approaches enabled discrimination among 10 date palm cultivars of from Saudi Arabia, which will provide valuable information for future improvement of this important crop.


PLOS ONE | 2014

Metabolomic response of Calotropis procera growing in the desert to changes in water availability.

Ahmed M. Ramadan; Jamal S. M. Sabir; Saleha Y. M. Alakilli; Ahmed M. Shokry; Nour O. Gadalla; Sherif Edris; Magdy A. Al-Kordy; Hassan S. Al-Zahrani; Fotouh M. El-Domyati; Ahmed Bahieldin; Neil R. Baker; Lothar Willmitzer; Susann Irgang

Water availability is a major limitation for agricultural productivity. Plants growing in severe arid climates such as deserts provide tools for studying plant growth and performance under extreme drought conditions. The perennial species Calotropis procera used in this study is a shrub growing in many arid areas which has an exceptional ability to adapt and be productive in severe arid conditions. We describe the results of studying the metabolomic response of wild C procera plants growing in the desert to a one time water supply. Leaves of C. procera plants were taken at three time points before and 1 hour, 6 hours and 12 hours after watering and subjected to a metabolomics and lipidomics analysis. Analysis of the data reveals that within one hour after watering C. procera has already responded on the metabolic level to the sudden water availability as evidenced by major changes such as increased levels of most amino acids, a decrease in sucrose, raffinose and maltitol, a decrease in storage lipids (triacylglycerols) and an increase in membrane lipids including photosynthetic membranes. These changes still prevail at the 6 hour time point after watering however 12 hours after watering the metabolomics data are essentially indistinguishable from the prewatering state thus demonstrating not only a rapid response to water availability but also a rapid response to loss of water. Taken together these data suggest that the ability of C. procera to survive under the very harsh drought conditions prevailing in the desert might be associated with its rapid adjustments to water availability and losses.


BMC Plant Biology | 2016

Analysis of transcriptional response to heat stress in Rhazya stricta

Abdullah Y. Obaid; Jamal S. M. Sabir; Ahmed Atef; Xuan Liu; Sherif Edris; Fotouh M. El-Domyati; Mohammed Z. Mutwakil; Nour O. Gadalla; Nahid H. Hajrah; Magdy A. Al-Kordy; Neil Hall; Ahmed Bahieldin; Robert K. Jansen

BackgroundClimate change is predicted to be a serious threat to agriculture due to the need for crops to be able to tolerate increased heat stress. Desert plants have already adapted to high levels of heat stress so they make excellent systems for identifying genes involved in thermotolerance. Rhazya stricta is an evergreen shrub that is native to extremely hot regions across Western and South Asia, making it an excellent system for examining plant responses to heat stress. Transcriptomes of apical and mature leaves of R. stricta were analyzed at different temperatures during several time points of the day to detect heat response mechanisms that might confer thermotolerance and protection of the plant photosynthetic apparatus.ResultsBiological pathways that were crosstalking during the day involved the biosynthesis of several heat stress-related compounds, including soluble sugars, polyols, secondary metabolites, phenolics and methionine. Highly downregulated leaf transcripts at the hottest time of the day (40–42.4xa0°C) included genes encoding cyclin, cytochrome p450/secologanin synthase and U-box containing proteins, while upregulated, abundant transcripts included genes encoding heat shock proteins (HSPs), chaperones, UDP-glycosyltransferase, aquaporins and protein transparent testa 12. The upregulation of transcripts encoding HSPs, chaperones and UDP-glucosyltransferase and downregulation of transcripts encoding U-box containing proteins likely contributed to thermotolerance in R. stricta leaf by correcting protein folding and preventing protein degradation. Transcription factors that may regulate expression of genes encoding HSPs and chaperones under heat stress included HSFA2 to 4, AP2-EREBP and WRKY27.ConclusionThis study contributed new insights into the regulatory mechanisms of thermotolerance in the wild plant species R. stricta, an arid land, perennial evergreen shrub common in the Arabian Peninsula and Indian subcontinent. Enzymes from several pathways are interacting in the biosynthesis of soluble sugars, polyols, secondary metabolites, phenolics and methionine and are the primary contributors to thermotolerance in this species.


Functional Plant Biology | 2014

Control of glycerol biosynthesis under high salt stress in Arabidopsis

Ahmed Bahieldin; Jamal S. M. Sabir; Ahmed M. Ramadan; Ahmed M. Alzohairy; Rania A. A. Younis; Ahmed M. Shokry; Nour O. Gadalla; Sherif Edris; Sabah M. Hassan; Magdy A. Al-Kordy; Khalid B.H. Kamal; Samar Rabah; Osama A. Abuzinadah; Fotouh M. El-Domyati

Loss-of-function and gain-of-function approaches were utilised to detect the physiological importance of glycerol biosynthesis during salt stress and the role of glycerol in conferring salt tolerance in Arabidopsis. The salt stress experiment involved wild type (WT) and transgenic Arabidopsis overexpressing the yeast GPD1 gene (analogue of Arabidopsis GLY1 gene). The experiment also involved the Arabidopsis T-DNA insertion mutants gly1 (for suppression of glycerol 3-phosphate dehydrogenase or G3PDH), gli1 (for suppression of glycerol kinase or GK), and act1 (for suppression of G3P acyltransferase or GPAT). We evaluated salt tolerance levels, in conjunction with glycerol and glycerol 3-phosphate (G3P) levels and activities of six enzymes (G3PDH, ADH (alcohol dehydrogenase), ALDH (aldehyde dehydrogenase), GK, G3PP (G3P phosphatase) and GLYDH (glycerol dehydrogenase)) involved in the glycerol pathway. The GPD1 gene was used to overexpress G3PDH, a cytosolic NAD+-dependent key enzyme of cellular glycerol biosynthesis essential for growth of cells under abiotic stresses. T2 GPD1-transgenic plants and those of the two mutants gli1 and act1 showed enhanced salt tolerance during different growth stages as compared with the WT and gly1 mutant plants. These results indicate that the participation of glycerol, rather than G3P, in salt tolerance in Arabidopsis. The results also indicate that the gradual increase in glycerol levels in T2 GPD1-transgenic, and gli1 and act1 mutant plants as NaCl level increases whereas they dropped at 200mM NaCl. However, the activities of the G3PDH, GK, G3PP and GLYDH at 150 and 200mM NaCl were not significantly different. We hypothesise that mechanism(s) of glycerol retention/efflux in the cell are affected at 200mM NaCl in Arabidopsis.


Comptes Rendus Biologies | 2014

Construction of naïve camelids VHH repertoire in phage display-based library

Jamal S. M. Sabir; Ahmed Atef; Fotouh M. El-Domyati; Sherif Edris; Nahid H. Hajrah; Ahmed M. Alzohairy; Ahmed Bahieldin

Camelids have unique antibodies, namely HCAbs (VHH) or commercially named Nanobodies(®) (Nb) that are composed only of a heavy-chain homodimer. As libraries based on immunized camelids are time-consuming, costly and likely redundant for certain antigens, we describe the construction of a naïve camelid VHHs library from blood serum of non-immunized camelids with affinity in the subnanomolar range and suitable for standard immune applications. This approach is rapid and recovers VHH repertoire with the advantages of being more diverse, non-specific and devoid of subpopulations of specific antibodies, which allows the identification of binders for any potential antigen (or pathogen). RNAs from a number of camelids from Saudi Arabia were isolated and cDNAs of the diverse vhh gene were amplified; the resulting amplicons were cloned in the phage display pSEX81 vector. The size of the library was found to be within the required range (10(7)) suitable for subsequent applications in disease diagnosis and treatment. Two hundred clones were randomly selected and the inserted gene library was either estimated for redundancy or sequenced and aligned to the reference camelid vhh gene (acc. No.xa0ADE99145). Results indicated complete non-specificity of this small library in which no single event of redundancy was detected. These results indicate the efficacy of following this approach in order to yield a large and diverse enough gene library to secure the presence of the required version encoding the required antibodies for any target antigen. This work is a first step towards the construction of phage display-based biosensors useful in disease (e.g., TB or tuberculosis) diagnosis and treatment.


Plant Cell Tissue and Organ Culture | 2011

Characterization of inhibitor(s) of β-glucuronidase enzyme activity in GUS -transgenic wheat

Ahmed M. Ramadan; Hala F. Eissa; Fotouh M. El-Domyati; O. M. Saleh; N. E. Ibrahim; M. Salama; M. M. Mahfouz; Ahmed Bahieldin

The uidA gene, encoding for β-glucuronidase (GUS), is the most frequently used reporter gene in plants. As a reporter enzyme, GUS can be assayed both qualitatively and quantitatively. In wheat, there are numerous reports of failure in detecting GUS enzyme activity in tissues of transgenic plants, while other reports have suggested presence of β-glucuronidase inhibitor(s) in wheat tissues. In the present study, we show that the β-glucuronidase enzyme activity is not only tissue-specific but also genotype-dependent. Our data demonstrate that the glucuronic acid could be the candidate inhibitor for β-glucuronidase enzyme activity in wheat leaves and roots. It should be noted that the assays to detect β-glucuronidase enzyme activity in wheat should be interpreted carefully. Based on the data of our present study, we recommend studying the chemical pathways, the unintended effects and the possible loss-of-function of any candidate transgene prior to transformation experiments.


Comptes Rendus Biologies | 2014

Corrected sequence of the wheat plastid genome

Ahmed Bahieldin; Magdy A. Al-Kordy; Ahmed M. Shokry; Nour O. Gadalla; Ahmed M. Al-Hejin; Jamal S. M. Sabir; Sabah M. Hassan; Ahlam A. Al-Ahmadi; Erika N. Schwarz; Hala F. Eissa; Fotouh M. El-Domyati; Robert K. Jansen

Wheat is the most important cereal in the world in terms of acreage and productivity. We sequenced and assembled the plastid genome of one Egyptian wheat cultivar using next-generation sequence data. The size of the plastid genome is 133,873 bp, which is 672 bp smaller than the published plastid genome of Chinese Spring cultivar, due mainly to the presence of three sequences from the rice plastid genome. The difference in size between the previously published wheat plastid genome and the sequence reported here is due to contamination of the published genome with rice plastid DNA, most of which is present in three sequences of 332, 131 and 131 bp. The corrected plastid genome of wheat has been submitted to GenBank (accession number KJ592713) and can be used in future comparisons.


PLOS ONE | 2017

Transcriptomic analysis of salt stress responsive genes in Rhazya stricta.

Nahid H. Hajrah; Abdullah Y. Obaid; Ahmed Atef; Ahmed M. Ramadan; Dhivya Arasappan; Charllotte A. Nelson; Sherif Edris; Mohammed Z. Mutwakil; Alawia Alhebshi; Nour O. Gadalla; Rania M. Makki; Madgy A. Al-Kordy; Fotouh M. El-Domyati; Jamal S. M. Sabir; Mohammad A. Khiyami; Neil Hall; Ahmed Bahieldin; Robert K. Jansen; Zhong-Hua Chen

Rhazya stricta is an evergreen shrub that is widely distributed across Western and South Asia, and like many other members of the Apocynaceae produces monoterpene indole alkaloids that have anti-cancer properties. This species is adapted to very harsh desert conditions making it an excellent system for studying tolerance to high temperatures and salinity. RNA-Seq analysis was performed on R. stricta exposed to severe salt stress (500 mM NaCl) across four time intervals (0, 2, 12 and 24 h) to examine mechanisms of salt tolerance. A large number of transcripts including genes encoding tetrapyrroles and pentatricopeptide repeat (PPR) proteins were regulated only after 12 h of stress of seedlings grown in controlled greenhouse conditions. Mechanisms of salt tolerance in R. stricta may involve the upregulation of genes encoding chaperone protein Dnaj6, UDP-glucosyl transferase 85a2, protein transparent testa 12 and respiratory burst oxidase homolog protein b. Many of the highly-expressed genes act on protecting protein folding during salt stress and the production of flavonoids, key secondary metabolites in stress tolerance. Other regulated genes encode enzymes in the porphyrin and chlorophyll metabolic pathway with important roles during plant growth, photosynthesis, hormone signaling and abiotic responses. Heme biosynthesis in R. stricta leaves might add to the level of salt stress tolerance by maintaining appropriate levels of photosynthesis and normal plant growth as well as by the participation in reactive oxygen species (ROS) production under stress. We speculate that the high expression levels of PPR genes may be dependent on expression levels of their targeted editing genes. Although the results of PPR gene family indicated regulation of a large number of transcripts under salt stress, PPR actions were independent of the salt stress because their RNA editing patterns were unchanged.


BMC Plant Biology | 2017

Transcriptomic and metabolic responses of Calotropis procera to salt and drought stress

Mohammed Z. Mutwakil; Nahid H. Hajrah; Ahmed Atef; Sherif Edris; Mernan J. Sabir; Areej K. Al-Ghamdi; Meshaal J. Sabir; Charlotte Nelson; Rania M. Makki; Hani M. Ali; Fotouh M. El-Domyati; Abdulrahman S. M. Al-Hajar; Yoann Gloaguen; Hassan S. Al-Zahrani; Jamal S. M. Sabir; Robert K. Jansen; Ahmed Bahieldin; Neil Hall

BackgroundCalotropis procera is a wild plant species in the family Apocynaceae that is able to grow in harsh, arid and heat stressed conditions. Understanding how this highly adapted plant persists in harsh environments should inform future efforts to improve the hardiness of crop and forage plant species. To study the plant response to droμght and osmotic stress, we treated plants with polyethylene glycol and NaCl and carried out transcriptomic and metabolomics measurements across a time-course of five days.ResultsWe identified a highly dynamic transcriptional response across the time-course including dramatic changes in inositol signaling, stress response genes and cytokinins. The resulting metabolome changes also involved sharp increases of myo-inositol, a key signaling molecule and elevated amino acid metabolites at later times.ConclusionsThe data generated here provide a first glimpse at the expressed genome of C. procera, a plant that is exceptionally well adapted to arid environments. We demonstrate, through transcriptome and metabolome analysis that myo-inositol signaling is strongly induced in response to drought and salt stress and that there is elevation of amino acid concentrations after prolonged osmotic stress. This work should lay the foundations of future studies in adaptation to arid environments.

Collaboration


Dive into the Fotouh M. El-Domyati's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ahmed Atef

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nour O. Gadalla

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ahmed M. Shokry

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert K. Jansen

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge