Sabah M. Hassan
Ain Shams University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sabah M. Hassan.
Comptes Rendus Biologies | 2015
Ahmed Bahieldin; Ahmed Atef; Jamal S. M. Sabir; Nour O. Gadalla; Sherif Edris; Ahmed M. Alzohairy; Nezar A. Radhwan; Mohammed N. Baeshen; Ahmed M. Ramadan; Hala F. Eissa; Sabah M. Hassan; Nabih A. Baeshen; Osama A. Abuzinadah; Magdy A. Al-Kordy; Fotouh M. El-Domyati; Robert K. Jansen
Wild salt-tolerant barley (Hordeum spontaneum) is the ancestor of cultivated barley (Hordeum vulgare or H.xa0vulgare). Although the cultivated barley genome is well studied, little is known about genome structure and function of its wild ancestor. In the present study, RNA-Seq analysis was performed on young leaves of wild barley treated with salt (500mM NaCl) at four different time intervals. Transcriptome sequencing yielded 103 to 115 million reads for all replicates of each treatment, corresponding to over 10 billion nucleotides per sample. Of the total reads, between 74.8 and 80.3% could be mapped and 77.4 to 81.7% of the transcripts were found in the H.xa0vulgare unigene database (unigene-mapped). The unmapped wild barley reads for all treatments and replicates were assembled de novo and the resulting contigs were used as a new reference genome. This resulted in 94.3 to 95.3% of the unmapped reads mapping to the new reference. The number of differentially expressed transcripts was 9277, 3861 of which were unigene-mapped. The annotated unigene- and de novo-mapped transcripts (5100) were utilized to generate expression clusters across time of salt stress treatment. Two-dimensional hierarchical clustering classified differential expression profiles into nine expression clusters, four of which were selected for further analysis. Differentially expressed transcripts were assigned to the main functional categories. The most important groups were response to external stimulus and electron-carrier activity. Highly expressed transcripts are involved in several biological processes, including electron transport and exchanger mechanisms, flavonoid biosynthesis, reactive oxygen species (ROS) scavenging, ethylene production, signaling network and protein refolding. The comparisons demonstrated that mRNA-Seq is an efficient method for the analysis of differentially expressed genes and biological processes under salt stress.
Plasmid | 2014
Ahmed Bahieldin; Nour O. Gadalla; Saleh M. Al-Garni; Hussein A. Almehdar; Samah Noor; Sabah M. Hassan; Ahmed M. Shokry; Jamal S. M. Sabir; Norio Murata
Lycopene is an effective antioxidant proposed as a possible treatment for some cancers and other degenerative human conditions. This study aims at generation of a yeast strain (Saccharomyces cerevisiae) of efficient productivity of lycopene by overexpressing synthetic genes derived from crtE, crtB and crtI genes of Erwinia uredovora. These synthetic genes were constructed in accordance with the preferred codon usage in S. cerevisiae but with no changes in amino acid sequences of the gene products. S. cerevisiae cells were transformed with these synthetic crt genes, whose expression was regulated by the ADH2 promoter, which is de-repressed upon glucose depletion. The RT-PCR and Western blotting analyses indicated that the synthetic crt genes were efficiently transcribed and translated in crt-transformed S. cerevisiae cells. The highest level of lycopene in one of the transformed lines was 3.3mglycopene/g dry cell weight, which is higher than the previously reported levels of lycopene in other microorganisms transformed with the three genes. These results suggest the excellence of using the synthetic crt genes and the ADH2 promoter in generation of recombinant S. cerevisiae that produces a high level of lycopene. The level of ergosterol was reversely correlated to that of lycopene in crt-transformed S. cerevisiae cells, suggesting that two pathways for lycopene and ergosterol syntheses compete for the use of farnesyl diphosphate.
Logopedics Phoniatrics Vocology | 2015
Rasha M. El-Kassabi; Sabah M. Hassan; Tamer A. Mesallam; Khalid H. Malki; Mohamed Farahat; Abdullah Alfaris
Abstract Objective. The aims of this study were to obtain normative nasalance scores for a normal Saudi population with different ages and genders, to develop nasometric Arabic speech materials, and to make cross-linguistic comparison. Subjects. Participants included 219 normal Saudi native monolingual Arabic speakers of different ages. Subjects were classified into four groups according to age and gender. Subjects did not have any history of oral, nasal, or velopharyngeal abnormality. Methods. Arabic speech samples were developed to evaluate nasalance scores, which included syllables repetition, three oral sentences, three oro-nasal sentences, and three nasal sentences. Nasalance data were obtained using Nasometer II–6400. Results. Normative nasalance values were determined. Significant differences between the male and female children groups were noticed in many parameters. Nasalance scores were higher in adults, with significant differences between all groups. Conclusion. Normative nasalance scores for Saudi Arabic speakers have been developed for both adults and children. The Arabic speech materials developed in this study appear to be easy to use and applicable for different age groups.
Functional Plant Biology | 2014
Ahmed Bahieldin; Jamal S. M. Sabir; Ahmed M. Ramadan; Ahmed M. Alzohairy; Rania A. A. Younis; Ahmed M. Shokry; Nour O. Gadalla; Sherif Edris; Sabah M. Hassan; Magdy A. Al-Kordy; Khalid B.H. Kamal; Samar Rabah; Osama A. Abuzinadah; Fotouh M. El-Domyati
Loss-of-function and gain-of-function approaches were utilised to detect the physiological importance of glycerol biosynthesis during salt stress and the role of glycerol in conferring salt tolerance in Arabidopsis. The salt stress experiment involved wild type (WT) and transgenic Arabidopsis overexpressing the yeast GPD1 gene (analogue of Arabidopsis GLY1 gene). The experiment also involved the Arabidopsis T-DNA insertion mutants gly1 (for suppression of glycerol 3-phosphate dehydrogenase or G3PDH), gli1 (for suppression of glycerol kinase or GK), and act1 (for suppression of G3P acyltransferase or GPAT). We evaluated salt tolerance levels, in conjunction with glycerol and glycerol 3-phosphate (G3P) levels and activities of six enzymes (G3PDH, ADH (alcohol dehydrogenase), ALDH (aldehyde dehydrogenase), GK, G3PP (G3P phosphatase) and GLYDH (glycerol dehydrogenase)) involved in the glycerol pathway. The GPD1 gene was used to overexpress G3PDH, a cytosolic NAD+-dependent key enzyme of cellular glycerol biosynthesis essential for growth of cells under abiotic stresses. T2 GPD1-transgenic plants and those of the two mutants gli1 and act1 showed enhanced salt tolerance during different growth stages as compared with the WT and gly1 mutant plants. These results indicate that the participation of glycerol, rather than G3P, in salt tolerance in Arabidopsis. The results also indicate that the gradual increase in glycerol levels in T2 GPD1-transgenic, and gli1 and act1 mutant plants as NaCl level increases whereas they dropped at 200mM NaCl. However, the activities of the G3PDH, GK, G3PP and GLYDH at 150 and 200mM NaCl were not significantly different. We hypothesise that mechanism(s) of glycerol retention/efflux in the cell are affected at 200mM NaCl in Arabidopsis.
Comptes Rendus Biologies | 2014
Ahmed Bahieldin; Magdy A. Al-Kordy; Ahmed M. Shokry; Nour O. Gadalla; Ahmed M. Al-Hejin; Jamal S. M. Sabir; Sabah M. Hassan; Ahlam A. Al-Ahmadi; Erika N. Schwarz; Hala F. Eissa; Fotouh M. El-Domyati; Robert K. Jansen
Wheat is the most important cereal in the world in terms of acreage and productivity. We sequenced and assembled the plastid genome of one Egyptian wheat cultivar using next-generation sequence data. The size of the plastid genome is 133,873 bp, which is 672 bp smaller than the published plastid genome of Chinese Spring cultivar, due mainly to the presence of three sequences from the rice plastid genome. The difference in size between the previously published wheat plastid genome and the sequence reported here is due to contamination of the published genome with rice plastid DNA, most of which is present in three sequences of 332, 131 and 131 bp. The corrected plastid genome of wheat has been submitted to GenBank (accession number KJ592713) and can be used in future comparisons.
Comptes Rendus Biologies | 2014
Ahmed M. Shokry; Saleh Al-Karim; Ahmed M. Ramadan; Nour O. Gadallah; Sanaa G. Al Attas; Jamal S. M. Sabir; Sabah M. Hassan; Magdy A. Madkour; Ray A. Bressan; Magdy M. Mahfouz; Ahmed Bahieldin
The wild plant species Calotropis procera (C.xa0procera) has many potential applications and beneficial uses in medicine, industry and ornamental field. It also represents an excellent source of genes for drought and salt tolerance. Genes encoding proteins that contain the conserved universal stress protein (USP) domain are known to provide organisms like bacteria, archaea, fungi, protozoa and plants with the ability to respond to a plethora of environmental stresses. However, information on the possible occurrence of Usp in C.xa0procera is not available. In this study, we uncovered and characterized a one-class A Usp-like (UspA-like, NCBI accession No. KC954274) gene in this medicinal plant from the de novo assembled genome contigs of the high-throughput sequencing dataset. A number of GenBank accessions for Usp sequences were blasted with the recovered de novo assembled contigs. Homology modelling of the deduced amino acids (NCBI accession No. AGT02387) was further carried out using Swiss-Model, accessible via the EXPASY. Superimposition of C.xa0procera USPA-like full sequence model on Thermus thermophilus USP UniProt protein (PDB accession No. Q5SJV7) was constructed using RasMol and Deep-View programs. The functional domains of the novel USPA-like amino acids sequence were identified from the NCBI conserved domain database (CDD) that provide insights into sequence structure/function relationships, as well as domain models imported from a number of external source databases (Pfam, SMART, COG, PRK, TIGRFAM).
Plant Methods | 2017
Hala F. Eissa; Sameh E. Hassanien; Ahmed M. Ramadan; Moustafa M. El-Shamy; O. M. Saleh; Ahmed M. Shokry; Mohamed T. Abdelsattar; Yasser B. Morsy; Maher A. El-Maghraby; Hussien Alameldin; Sabah M. Hassan; Gamal Osman; Hesham T. Mahfouz; Gharib A. Gad El-Karim; Magdy A. Madkour; Ahmed Bahieldin
BackgroundThe main aim of this study was to improve fungal resistance in bread wheat via transgenesis. Transgenic wheat plants harboring barley chitinase (chi26) gene, driven by maize ubi promoter, were obtained using biolistic bombardment, whereas the herbicide resistance gene, bar, driven by the CaMV 35S promoter was used as a selectable marker.ResultsMolecular analysis confirmed the integration, copy number, and the level of expression of the chi26 gene in four independent transgenic events. Chitinase enzyme activity was detected using a standard enzymatic assay. The expression levels of chi26 gene in the different transgenic lines, compared to their respective controls, were determined using qRT-PCR. The transgene was silenced in some transgenic families across generations. Gene silencing in the present study seemed to be random and irreversible. The homozygous transgenic plants of T4, T5, T6, T8, and T9 generations were tested in the field for five growing seasons to evaluate their resistance against rusts and powdery mildew. The results indicated high chitinase activity at T0 and high transgene expression levels in few transgenic families. This resulted in high resistance against wheat rusts and powdery mildew under field conditions. It was indicated by proximate and chemical analyses that one of the transgenic families and the non-transgenic line were substantially equivalent.ConclusionTransgenic wheat with barley chi26 was found to be resistant even after five generations under artificial fungal infection conditions. One transgenic line was proved to be substantially equivalent as compared to the non-transgenic control.
Comptes Rendus Biologies | 2013
Sameh E. Hassanien; Ahmed M. Ramadan; Ahmed Z. Abdel Azeiz; Rasha A. Mohammed; Sabah M. Hassan; Ahmed M. Shokry; Ahmed Atef; Khalid B.H. Kamal; Samar Rabah; Jamal S. M. Sabir; Osama A. Abuzinadah; Fotouh M. El-Domyati; Gregory B. Martin; Ahmed Bahieldin
Thymoquinone (TQ) is a major constituent of Nigella sativa oil with reported anti-oxidative activity and anti-inflammatory activity in animal cells. It also inhibits proliferation and induces programmed cell death (apoptosis) in human skin cancer cells. The present study sought to detect the influence of TQ on dividing cells of three plant systems and on expression of Bcl2-associated athanogene-like (BAG-like) genes that might be involved during the process of cell death. BAG genes are known for the regulation of diverse physiological processes in animals, including apoptosis, tumorigenesis, stress responses, and cell division. Synthetic TQ at 0.1mg/mL greatly reduced wheat seed germination rate, whereas 0.2mg/mL completely inhibited germination. An Evans blue assay revealed moderate cell death in the meristematic zone of Glycine max roots after 1h of TQ treatment (0.2mg/mL), with severe cell death occurring in this zone after 2h of treatment. Light microscopy of TQ-treated (0.2mg/mL) onion hairy root tips for 1h revealed anti-mitotic activity and also cell death-associated changes, including nuclear membrane disruption and nuclear fragmentation. Transmission electron microscopy of TQ-treated cells (0.2mg/mL) for 1h revealed shrinkage of the plasma membrane, leakage of cell lysate, degradation of cell walls, enlargement of vacuoles and condensation of nuclei. Expression of one BAG-like gene, previously associated with cell death, was induced 20 min after TQ treatment in Glycine max root tip cells. Thus, TQ has multiple effects, including cell death, on dividing plant cells and plants may serve as a useful system to further investigate the mechanisms underlying the response of eukaryotic cells to TQ.
Comptes Rendus Biologies | 2017
Ahmed Bahieldin; Ahmed Atef; Ahmed M. Shokry; Saleh Al-Karim; Sanaa G. Al Attas; Nour O. Gadallah; Sherif Edris; Magdy A. Al-Kordy; Sabah M. Hassan; Salah Abo-Aba; Fotouh M. El-Domyati
RNA-Seq of the Catharanthusxa0roseus SRA database was done in order to detect putative universal stress proteins (USPs) and their possible controlling factors. Previous analysis indicated the existence and characterization of uspA-like genes. In silico analysis of RNA-Seq database in several plant tissues revealed the possible functions and regulations of some uspA-like transcripts whose transcription factors (TFs) that might drive their expression were detected. BLAST indicated the existence of TF superfamilies erf (ethylene-responsive TF), bHLH (basic helix-loop-helix) and WRKY that might regulate several uspA-like genes. This data was proven via semi-quantitative RT-PCR in four plant tissues. Several of these transcription factor superfamilies are known for their action in the plant defense against biotic and abiotic stresses.
Comptes Rendus Biologies | 2015
Ahmed Bahieldin; Ahmed Atef; Ahmed M. Shokry; Saleh Al-Karim; Sanaa G. Al Attas; Nour O. Gadallah; Sherif Edris; Magdy A. Al-Kordy; Abdulkader M. Shaikh Omer; Jamal S. M. Sabir; Ahmed M. Ramadan; Abdulrahman S. M. Al-Hajar; Rania M. Makki; Sabah M. Hassan; Fotouh M. El-Domyati
Nucleotide sequences of the C.xa0roseus SRA database were assembled and translated in order to detect putative universal stress proteins (USPs). Based on the known conserved USPA domain, 24xa0Pfam putative USPA proteins in C.xa0roseus were detected and arranged in six architectures. The USPA-like domain was detected in all architectures, while the protein kinase-like (or PK-like), (tyr)PK-like and/or U-box domains are shown downstream it. Three other domains were also shown to coexist with the USPA domain in C.xa0roseus putative USPA sequences. These domains are tetratricopeptide repeat (or TPR), apolipophorin III (or apoLp-III) and Hsp90 co-chaperone Cdc37. Subsequent analysis divided USPA-like domains based on the ability to bind ATP. The multiple sequence alignment indicated the occurrence of eight C.xa0roseus residues of known features of the bacterial 1MJH secondary structure. The data of the phylogenetic tree indicated several distinct groups of USPA-like domains confirming the presence of high level of sequence conservation between the plant and bacterial USPA-like sequences.