Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Franceli Rodrigues Kulcheski is active.

Publication


Featured researches published by Franceli Rodrigues Kulcheski.


BMC Genomics | 2011

Identification of novel soybean microRNAs involved in abiotic and biotic stresses

Franceli Rodrigues Kulcheski; Luiz Fv de Oliveira; Lorrayne Gomes Molina; Mauricio Pereira Almerão; Fabiana Aparecida Rodrigues; Juliana Marcolino; Joice F Barbosa; Renata Stolf-Moreira; Alexandre Lima Nepomuceno; Francismar Corrêa Marcelino-Guimarães; Ricardo V. Abdelnoor; Leandro Costa do Nascimento; Marcelo Falsarella Carazzolle; Gonçalo Ag Pereira; Rogério Margis

BackgroundSmall RNAs (19-24 nt) are key regulators of gene expression that guide both transcriptional and post-transcriptional silencing mechanisms in eukaryotes. Current studies have demonstrated that microRNAs (miRNAs) act in several plant pathways associated with tissue proliferation, differentiation, and development and in response to abiotic and biotic stresses. In order to identify new miRNAs in soybean and to verify those that are possibly water deficit and rust-stress regulated, eight libraries of small RNAs were constructed and submitted to Solexa sequencing.ResultsThe libraries were developed from drought-sensitive and tolerant seedlings and rust-susceptible and resistant soybeans with or without stressors. Sequencing the library and subsequent analyses detected 256 miRNAs. From this total, we identified 24 families of novel miRNAs that had not been reported before, six families of conserved miRNAs that exist in other plants species, and 22 families previously reported in soybean. We also observed the presence of several isomiRNAs during our analyses. To validate novel miRNAs, we performed RT-qPCR across the eight different libraries. Among the 11 miRNAs analyzed, all showed different expression profiles during biotic and abiotic stresses to soybean. The majority of miRNAs were up-regulated during water deficit stress in the sensitive plants. However, for the tolerant genotype, most of the miRNAs were down regulated. The pattern of miRNAs expression was also different for the distinct genotypes submitted to the pathogen stress. Most miRNAs were down regulated during the fungus infection in the susceptible genotype; however, in the resistant genotype, most miRNAs did not vary during rust attack. A prediction of the putative targets was carried out for conserved and novel miRNAs families.ConclusionsValidation of our results with quantitative RT-qPCR revealed that Solexa sequencing is a powerful tool for miRNA discovery. The identification of differentially expressed plant miRNAs provides molecular evidence for the possible involvement of miRNAs in the process of water deficit- and rust-stress responses.


Analytical Biochemistry | 2010

The use of microRNAs as reference genes for quantitative polymerase chain reaction in soybean

Franceli Rodrigues Kulcheski; Francismar Corrêa Marcelino-Guimarães; Alexandre Lima Nepomuceno; Ricardo V. Abdelnoor; Rogério Margis

Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a robust and widely applied technique used to investigate gene expression. However, for correct analysis and interpretation of results, the choice of a suitable gene to use as an internal control is a crucial factor. These genes, such as housekeeping genes, should have a constant expression level in different tissues and across different conditions. The advances in genome sequencing have provided high-throughput gene expression analysis and have contributed to the identification of new genes, including microRNAs (miRNAs). The miRNAs are fundamental regulatory genes of eukaryotic genomes, acting on several biological functions. In this study, miRNA expression stability was investigated in different soybean tissues and genotypes as well as after abiotic or biotic stress treatments. The present study represents the first investigation into the suitability of miRNAs as housekeeping genes in plants. The transcript stability of 10 miRNAs was compared to those of six previously reported housekeeping genes for the soybean. In this study, we provide evidence that the expression stabilities of miR156b and miR1520d were the highest across the soybean experiments. Furthermore, these miRNAs genes were more stable than the most commonly protein-coding genes used in soybean gene expression studies involving RT-qPCR.


Journal of Biotechnology | 2016

Circular RNAs are miRNA sponges and can be used as a new class of biomarker.

Franceli Rodrigues Kulcheski; Ana Paula Christoff; Rogério Margis

Circular RNAs (circRNAs) are a class of non-coding RNAs (ncRNAs) that are involved in transcriptional and posttranscriptional gene expression regulation. The development of deep sequencing of ribosomal RNA (rRNA)-depleted RNA libraries, associated with improved computational tools, has provided the identification of several new circRNAs in all sorts of organisms, from protists, plants and fungi to animals. Recently, it was discovered that endogenous circRNAs can work as microRNA (miRNA) sponges. This means that the circRNAs bind to miRNAs and consequently repress their function, providing a new model of action for this class of ncRNA, as well as indicating another mechanism that regulates miRNA activity. As miRNAs control a large set of biological processes, circRNA sponge activity will also affect these pathways. Several studies have associated miRNA sponges with human diseases, including osteoarthritis, diabetes, neurodegenerative pathologies and several types of cancer. Additionally, high stability, abundance and tissue-specific expression patterns make circRNA sponges very attractive for clinical research. Herein, we review the biogenesis, properties and function of endogenous circRNA sponges, with a special focus on those related to human cancer. A list of web tools available for the study of circRNAs is also given. Additionally, we discuss the possibility of using circRNAs as molecular markers for the diagnosis of diseases.


Genetics and Molecular Biology | 2012

Metatranscriptomic analysis of small RNAs present in soybean deep sequencing libraries

Lorrayne Gomes Molina; Guilherme Cordenonsi da Fonseca; Guilherme Loss de Morais; Luiz Felipe Valter de Oliveira; Joseane Biso de Carvalho; Franceli Rodrigues Kulcheski; Rogério Margis

A large number of small RNAs unrelated to the soybean genome were identified after deep sequencing of soybean small RNA libraries. A metatranscriptomic analysis was carried out to identify the origin of these sequences. Comparative analyses of small interference RNAs (siRNAs) present in samples collected in open areas corresponding to soybean field plantations and samples from soybean cultivated in greenhouses under a controlled environment were made. Different pathogenic, symbiotic and free-living organisms were identified from samples of both growth systems. They included viruses, bacteria and different groups of fungi. This approach can be useful not only to identify potentially unknown pathogens and pests, but also to understand the relations that soybean plants establish with microorganisms that may affect, directly or indirectly, plant health and crop production.


Frontiers in Plant Science | 2015

NPK macronutrients and microRNA homeostasis

Franceli Rodrigues Kulcheski; Régis L. Corrêa; Igor A. Gomes; Júlio César de Lima; Rogério Margis

Macronutrients are essential elements for plant growth and development. In natural, non-cultivated systems, the availability of macronutrients is not a limiting factor of growth, due to fast recycling mechanisms. However, their availability might be an issue in modern agricultural practices, since soil has been frequently over exploited. From a crop management perspective, the nitrogen (N), phosphorus (P), and potassium (K) are three important limiting factors and therefore frequently added as fertilizers. NPK are among the nutrients that have been reported to alter post-embryonic root developmental processes and consequently, impairs crop yield. To cope with nutrients scarcity, plants have evolved several mechanisms involved in metabolic, physiological, and developmental adaptations. In this scenario, microRNAs (miRNAs) have emerged as additional key regulators of nutrients uptake and assimilation. Some studies have demonstrated the intrinsic relation between miRNAs and their targets, and how they can modulate plants to deal with the NPK availability. In this review, we focus on miRNAs and their regulation of targets involved in NPK metabolism. In general, NPK starvation is related with miRNAs that are involved in root-architectural changes and uptake activity modulation. We further show that several miRNAs were discovered to be involved in plant–microbe symbiosis during N and P uptake, and in this way we present a global view of some studies that were conducted in the last years. The integration of current knowledge about miRNA-NPK signaling may help future studies to focus in good candidates genes for the development of important tools for plant nutritional breeding.


Molecular Phylogenetics and Evolution | 2016

Molecular evolution of the lysophosphatidic acid acyltransferase (LPAAT) gene family.

Ana Paula Korbes; Franceli Rodrigues Kulcheski; Rogério Margis; Marcia Margis-Pinheiro; Andreia Carina Turchetto-Zolet

Lysophosphatidic acid acyltransferases (LPAATs) perform an essential cellular function by controlling the production of phosphatidic acid (PA), a key intermediate in the synthesis of membrane, signaling and storage lipids. Although LPAATs have been extensively explored by functional and biotechnological studies, little is known about their molecular evolution and diversification. We performed a genome-wide analysis using data from several plants and animals, as well as other eukaryotic and prokaryotic species, to identify LPAAT genes and analyze their evolutionary history. We used phylogenetic and molecular evolution analysis to test the hypothesis of distinct origins for these genes. The reconstructed phylogeny supported the ancient origin of some isoforms (plant LPAAT1 and LPAATB; animal AGPAAT1/2), while others emerged more recently (plant LPAAT2/3/4/5; AGPAAT3/4/5/8). Additionally, the hypothesis of endosymbiotic origin of the plastidic isoform LPAAT1 was confirmed. LPAAT genes from plants and animals mainly experienced strong purifying selection pressures with limited functional divergence after the species-specific duplications. Gene expression analyses of LPAAT isoforms in model plants demonstrated distinct LPAAT expression patterns in these organisms. The results showed that distinct origins followed by diversification of the LPAAT genes shaped the evolution of TAG biosynthesis. The expression pattern of individual genes may be responsible for adaptation into multiple ecological niches.


Plant Science | 2014

De novo assembly of Eugenia uniflora L. transcriptome and identification of genes from the terpenoid biosynthesis pathway

Frank Guzman; Franceli Rodrigues Kulcheski; Andreia Carina Turchetto-Zolet; Rogério Margis

Pitanga (Eugenia uniflora L.) is a member of the Myrtaceae family and is of particular interest due to its medicinal properties that are attributed to specialized metabolites with known biological activities. Among these molecules, terpenoids are the most abundant in essential oils that are found in the leaves and represent compounds with potential pharmacological benefits. The terpene diversity observed in Myrtaceae is determined by the activity of different members of the terpene synthase and oxidosqualene cyclase families. Therefore, the aim of this study was to perform a de novo assembly of transcripts from E. uniflora leaves and to annotation to identify the genes potentially involved in the terpenoid biosynthesis pathway and terpene diversity. In total, 72,742 unigenes with a mean length of 1048bp were identified. Of these, 43,631 and 36,289 were annotated with the NCBI non-redundant protein and Swiss-Prot databases, respectively. The gene ontology categorized the sequences into 53 functional groups. A metabolic pathway analysis with KEGG revealed 8,625 unigenes assigned to 141 metabolic pathways and 40 unigenes predicted to be associated with the biosynthesis of terpenoids. Furthermore, we identified four putative full-length terpene synthase genes involved in sesquiterpenes and monoterpenes biosynthesis, and three putative full-length oxidosqualene cyclase genes involved in the triterpenes biosynthesis. The expression of these genes was validated in different E. uniflora tissues.


Genetics and Molecular Biology | 2016

Diversity and evolution of plant diacylglycerol acyltransferase (DGATs) unveiled by phylogenetic, gene structure and expression analyses.

Andreia Carina Turchetto-Zolet; Ana Paula Christoff; Franceli Rodrigues Kulcheski; Guilherme Loss-Morais; Rogério Margis; Marcia Margis-Pinheiro

Abstract Since the first diacylglycerol acyltransferase (DGAT) gene was characterized in plants, a number of studies have focused on understanding the role of DGAT activity in plant triacylglycerol (TAG) biosynthesis. DGAT enzyme is essential in controlling TAGs synthesis and is encoded by different genes. DGAT1 and DGAT2 are the two major types of DGATs and have been well characterized in many plants. On the other hand, the DGAT3 and WS/DGAT have received less attention. In this study, we present the first general view of the presence of putative DGAT3 and WS/DGAT in several plant species and report on the diversity and evolution of these genes and its relationships with the two main DGAT genes (DGAT1 and DGAT2). According to our analyses DGAT1, DGAT2, DGAT3 and WS/DGAT are very divergent genes and may have distinct origin in plants. They also present divergent expression patterns in different organs and tissues. The maintenance of several types of genes encoding DGAT enzymes in plants demonstrates the importance of DGAT activity for TAG biosynthesis. Evolutionary history studies of DGATs coupled with their expression patterns help us to decipher their functional role in plants, helping to drive future biotechnological studies.


Gene | 2016

Novel and conserved microRNAs in soybean floral whorls

Franceli Rodrigues Kulcheski; Lorrayne Gomes Molina; G.C. da Fonseca; G.L. de Morais; L.F.V. de Oliveira; Rogério Margis

MicroRNAs (miRNAs) correspond to a class of endogenous small non-coding RNAs (19-24 nt) that regulates the gene expression, through mRNA target cleavage or translation inhibition. In plants, miRNAs have been shown to play pivotal roles in a wide variety of metabolic and biological processes like plant growth, development, and response to biotic and abiotic stress. Soybean is one of the most important crops worldwide, due to the production of oil and its high protein content. The reproductive phase is considered the most important for soybean yield, which is mainly intended to produce the grains. The identification of miRNAs is not yet saturated in soybean, and there are no studies linking them to the different floral organs. In this study, three different mature soybean floral whorls were used in the construction of sRNA libraries. The sequencing of petal, carpel and stamen libraries generated a total of 10,165,661 sequences. Subsequent analyses identified 200 miRNAs sequences, among which, 41 were novel miRNAs, 80 were conserved soybean miRNAs, 31 were new antisense conserved soybean miRNAs and 46 were soybean miRNAs isoforms. We also found a new miRNA conserved in other plant species, and finally one miRNA-sibling of a soybean conserved miRNA. Conserved and novel miRNAs were evaluated by RT-qPCR. We observed a differential expression across the three whorls for six miRNAs. Computational predicted targets for miRNAs analyzed by RT-qPCR were identified and present functions related to reproductive process in plants. In summary, the increased accumulation of specific and novel miRNAs in different whorls indicates that miRNAs are an important part of the regulatory network in soybean flower.


Genetica | 2006

Molecular phylogenetic analysis of Petunia juss. (Solanaceae)

Franceli Rodrigues Kulcheski; Valeria Cunha Muschner; Aline P. Lorenz-Lemke; João Renato Stehmann; Sandro L. Bonatto; Francisco M. Salzano; Loreta B. Freitas

Collaboration


Dive into the Franceli Rodrigues Kulcheski's collaboration.

Top Co-Authors

Avatar

Rogério Margis

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Francisco M. Salzano

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

João Renato Stehmann

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Sandro L. Bonatto

Pontifícia Universidade Católica do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Valeria Cunha Muschner

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Andreia Carina Turchetto-Zolet

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Lorrayne Gomes Molina

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Alexandre Lima Nepomuceno

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Aline Pedroso Lorenz

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Aline Pedroso Lorenz-Lemke

Federal University of Mato Grosso do Sul

View shared research outputs
Researchain Logo
Decentralizing Knowledge