Frances G. O'Brien
Curtin University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frances G. O'Brien.
Journal of Clinical Microbiology | 2002
Keiko Okuma; Kozue Iwakawa; John D. Turnidge; W.B. Grubb; Jan M. Bell; Frances G. O'Brien; Geoffrey W. Coombs; J.W. Pearman; Fred C. Tenover; Maria Kapi; Chuntima Tiensasitorn; Teruyo Ito; Keiichi Hiramatsu
ABSTRACT Multiple methicillin-resistant Staphylococcus aureus (MRSA) clones carrying type IV staphylococcal cassette chromosome mec were identified in the community-acquired MRSA strains of both the United States and Australia. They multiplied much faster than health-care-associated MRSA and were resistant to fewer non-beta-lactam antibiotics. They seem to have been derived from more diverse S. aureus populations than health-care-associated MRSA strains.
PLOS ONE | 2011
Stefan Monecke; Geoffrey W. Coombs; Anna C. Shore; David C. Coleman; Patrick Eberechi Akpaka; Michael A. Borg; Henry Chow; Margaret Ip; Lutz Jatzwauk; Daniel Jonas; Kristina Kadlec; Angela M. Kearns; Frédéric Laurent; Frances G. O'Brien; Julie C. Pearson; Antje Ruppelt; Stefan Schwarz; E.A. Scicluna; Peter Slickers; Hui-Leen Tan; Stefan Weber; Ralf Ehricht
In recent years, methicillin-resistant Staphylococcus aureus (MRSA) have become a truly global challenge. In addition to the long-known healthcare-associated clones, novel strains have also emerged outside of the hospital settings, in the community as well as in livestock. The emergence and spread of virulent clones expressing Panton-Valentine leukocidin (PVL) is an additional cause for concern. In order to provide an overview of pandemic, epidemic and sporadic strains, more than 3,000 clinical and veterinary isolates of MRSA mainly from Germany, the United Kingdom, Ireland, France, Malta, Abu Dhabi, Hong Kong, Australia, Trinidad & Tobago as well as some reference strains from the United States have been genotyped by DNA microarray analysis. This technique allowed the assignment of the MRSA isolates to 34 distinct lineages which can be clearly defined based on non-mobile genes. The results were in accordance with data from multilocus sequence typing. More than 100 different strains were distinguished based on affiliation to these lineages, SCCmec type and the presence or absence of PVL. These strains are described here mainly with regard to clinically relevant antimicrobial resistance- and virulence-associated markers, but also in relation to epidemiology and geographic distribution. The findings of the study show a high level of biodiversity among MRSA, especially among strains harbouring SCCmec IV and V elements. The data also indicate a high rate of genetic recombination in MRSA involving SCC elements, bacteriophages or other mobile genetic elements and large-scale chromosomal replacements.
Antimicrobial Agents and Chemotherapy | 2009
Teruyo Ito; Keiichi Hiramatsu; D. Oliviera; H. de Lencastre; Kunyan Zhang; Henrik Westh; Frances G. O'Brien; Philip M. Giffard; David C. Coleman; Fred C. Tenover; Susan Boyle-Vavra; Robert Skov; Mark C. Enright; Barry N. Kreiswirth; Kwan Soo Ko; Hajo Grundmann; Frédéric Laurent; Johanna U. Ericson Sollid; Angela M. Kearns; Richard V. Goering; Joseph F. John; Robert S. Daum; Bo Söderquist
Classification of staphylococcal cassette chromosome mec (SCCmec) : guidelines for reporting novel SCCmec elements.
The Lancet | 2005
D. Ashley Robinson; Angela M. Kearns; Anne Holmes; Donald Morrison; Hajo Grundmann; Giles Edwards; Frances G. O'Brien; Fred C. Tenover; Linda K. McDougal; Alastair B. Monk; Mark C. Enright
During the 1950s, the notorious penicillin-resistant clone of Staphylococcus aureus known as phage type 80/81 emerged and caused serious hospital-acquired and community-acquired infections worldwide. This clone was largely eliminated in the 1960s, concurrent with the widespread use of penicillinase-resistant beta lactams. We investigated whether early 80/81 isolates had the genes for Panton-Valentine leucocidin, a toxin associated with virulence in healthy young people. Multilocus sequence analysis suggested that descendants of 80/81 have acquired meticillin resistance, are re-emerging as a community-acquired meticillin-resistant S aureus (MRSA) clone, and represent a sister lineage to pandemic hospital-acquired MRSA.
Journal of Clinical Microbiology | 2004
Geoffrey W. Coombs; Graeme R. Nimmo; Jan M. Bell; Flavia Huygens; Frances G. O'Brien; Mary J. Malkowski; Julie C. Pearson; Alex J. Stephens; Philip M. Giffard
ABSTRACT Increasing reports of the appearance of novel nonmultiresistant methicillin-resistant Staphylococcus aureus MRSA (MRSA) strains in the community and of the spread of hospital MRSA strains into the community are cause for public health concern. We conducted two national surveys of unique isolates of S. aureus from clinical specimens collected from nonhospitalized patients commencing in 2000 and 2002, respectively. A total of 11.7% of 2,498 isolates from 2000 and 15.4% of 2,486 isolates from 2002 were MRSA. Approximately 54% of the MRSA isolates were nonmultiresistant (resistant to less than three of nine antibiotics) in both surveys. The majority of multiresistant MRSA isolates in both surveys belonged to two strains (strains AUS-2 and AUS-3), as determined by pulsed-field gel electrophoresis (PFGE) and resistogram typing. The 3 AUS-2 isolates and 10 of the 11 AUS-3 isolates selected for multilocus sequence typing (MLST) and staphylococcal chromosomal cassette mec (SCCmec) analysis were ST239-MRSA-III (where ST is the sequence type) and thus belonged to the same clone as the eastern Australian MRSA strain of the 1980s, which spread internationally. Four predominant clones of novel nonmultiresistant MRSA were identified by PFGE, MLST, and SCCmec analysis: ST22-MRSA-IV (strain EMRSA-15), ST1-MRSA-IV (strain WA-1), ST30-MRSA-IV (strain SWP), and ST93-MRSA-IV (strain Queensland). The last three clones are associated with community acquisition. A total of 14 STs were identified in the surveys, including six unique clones of novel nonmultiresistant MRSA, namely, STs 73, 93, 129, 75, and 80slv and a new ST. SCCmec types IV and V were present in diverse genetic backgrounds. These findings provide support for the acquisition of SCCmec by multiple lineages of S. aureus. They also confirm that both hospital and community strains of MRSA are now common in nonhospitalized patients throughout Australia.
Journal of Clinical Microbiology | 2004
Frances G. O'Brien; Tien Tze Lim; F. N. Chong; Geoffrey W. Coombs; Mark C. Enright; D.A. Robinson; Alastair B. Monk; B. Saïd-Salim; Barry N. Kreiswirth; W.B. Grubb
ABSTRACT Community methicillin-resistant Staphylococcus aureus (CMRSA) strains are being isolated with increasing frequency around the world. In Western Australia CMRSA are endemic in geographically remote communities and have been found to belong to five different contour-clamped homogeneous electric field (CHEF) electrophoretic patterns. Representatives of each of these CHEF patterns have been compared to CMRSA representative of CHEF patterns from other Australian states and New Zealand. With one exception, all of the isolates were nonmultiresistant and were not resistant to many antimicrobial agents other than the β-lactams. With one exception, which is not believed to be a CMRSA, all of the isolates harbored a β-lactamase plasmid. Erythromycin resistance was associated with a 2-kb plasmid. One of the β-lactamase plasmids was found to be able to acquire additional resistance determinants to become a multiple resistance plasmid. There were 10 multilocus sequence types belonging to eight distantly related clonal complexes of S. aureus. One new sequence type was found. Although most of the CMRSA harbored the type IVa SCCmec, a type IV structural variant was found and two new SCCmec types were identified. Protein A gene (spa) typing revealed two new spa types and, with two exceptions, corresponded to multilocus sequence typing. In contrast to other reports on CMRSA, most of the CMRSA strains studied here did not contain the Panton-Valentine leukocidin genes. The results also demonstrate that nonmultiresistant hospital strains such as UK EMRSA-15 may be able to circulate in the community and could be mistaken for CMRSA based on their resistance profiles.
Antimicrobial Agents and Chemotherapy | 2012
Teruyo Ito; Keiichi Hiramatsu; Alexander Tomasz; Hermínia de Lencastre; Vincent Perreten; Matthew T. G. Holden; David C. Coleman; Richard V. Goering; Philip M. Giffard; Robert Skov; Kunyan Zhang; Henrik Westh; Frances G. O'Brien; Fred C. Tenover; Duarte C. Oliveira; Susan Boyle-Vavra; Frédéric Laurent; Angela M. Kearns; Barry N. Kreiswirth; Kwan Soo Ko; Hajo Grundmann; Johanna U. Ericson Sollid; Joseph F. John; Robert S. Daum; Bo Söderquist; Girbe Buist
Methicillin-resistant staphylococci are disseminated all over the world and are frequent causes of health care- and community-associated infections. Methicillin-resistant strains typically carry the acquired mecA gene that encodes a low-affinity penicillin-binding protein (PBP), designated PBP2a or
Emerging Infectious Diseases | 2006
Geoffrey W. Coombs; Julie C. Pearson; Frances G. O'Brien; Ronan Murray; W.B. Grubb; Keryn Christiansen
The emergence of multiple multidrug-resistant Panton-Valentine leukocidin–positive MRSA clones in the community is a major public health concern.
BMC Microbiology | 2011
Geoffrey W. Coombs; Stefan Monecke; Julie C. Pearson; Hui-Leen Tan; Yi-Kong Chew; Lynne Wilson; Ralf Ehricht; Frances G. O'Brien; Keryn Christiansen
BackgroundCommunity-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) was first reported in remote regions of Western Australia and is now the predominant MRSA isolated in the state. The objective of this study is to determine the genetic relatedness of Western Australian CA-MRSA clones within different multilocus sequence type (MLST) clonal clusters providing an insight into the frequency of S. aureus SCCmec acquisition within a region.ResultsThe CA-MRSA population in Western Australia is genetically diverse consisting of 83 unique pulsed-field gel electrophoresis strains from which 46 MLSTs have been characterised. Forty five of these sequence types are from 18 MLST clonal clusters and two singletons. While SCCmec IV and V are the predominant SCCmec elements, SCCmec VIII and several novel and composite SCCmec elements are present. The emergence of MRSA in diverse S. aureus clonal clusters suggests horizontal transmission of the SCCmec element has occurred on multiple occasions. Furthermore DNA microarray and spa typing suggests horizontal transfer of SCCmec elements has also occurred within the same CC. For many single and double locus variant CA-MRSA clones only a few isolates have been detected.ConclusionsAlthough multiple CA-MRSA clones have evolved in the Western Australian community only three clones have successfully adapted to the Western Australian community environment. These data suggest the successful evolution of a CA-MRSA clone may not only depend on the mobility of the SCCmec element but also on other genetic determinants.
Journal of Clinical Microbiology | 2005
Wei Qi; Miriam Ender; Frances G. O'Brien; Alexander Imhof; Christian Ruef; Nadine McCallum; Brigitte Berger-Bächi
ABSTRACT The majority of methicillin-resistant Staphylococcus aureus (MRSA) isolates, recovered in 2003 at the Department of Medical Microbiology in Zürich, Switzerland, belonged to major clones that are circulating worldwide. Staphylococcal cassette chromosome mec type IV (SCCmec-IV), harbored by half of the isolates, was found in sequence type 217 (ST217), which is an allelic variant of epidemic MRSA-15 (designated EMRSA-15), in a new local ST617 descending from clonal complex CC8 and in low-level oxacillin-resistant strains of multiple genetic lineages characteristic of community-onset MRSA. SCCmec-I, SCCmec-II, and SCCmec-III were in the minority, and four MRSA isolates had complex, rearranged SCCmec elements. A novel SCCmec-N1 of approximately 30 kb, associated with a dfrA gene and a ccr4-related recombinase complex, was identified in a large number of low-level oxacillin-resistant isolates, which descended from the successful clonal complex CC45 and are spreading among intraveneous drug users. In contrast, the SCCmec types of oxacillin-resistant coagulase-negative staphylococci (MRCNS) were of completely different composition. SCCmec type I (SCCmec-I) and SCCmec-II were more frequent than in the MRSA, while fewer contained SCCmec-IV. The other MRCNS displayed 11 different, complex patterns, suggesting frequent recombination between different SCCmec elements. With one ccr-negative exception, these strains amplified between one and three different ccr products, indicating either new varied complexes or multiple ccr loci. This suggests the presence of novel SCCmec types in MRCNS and no extensive interspecies SCCmec transfer between MRSA and MRCNS.