Frances Lefcort
Montana State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frances Lefcort.
Development | 2005
Jennifer C. Kasemeier-Kulesa; Paul M. Kulesa; Frances Lefcort
The neural crest is a migratory population of cells that produces many diverse structures within the embryo. Trunk neural crest cells give rise to such structures as the dorsal root ganglia (DRG) and sympathetic ganglia (SG), which form in a metameric pattern along the anterior-posterior axis of the embryo. While static analyses have provided invaluable information concerning the development of these structures, time-lapse imaging of neural crest cells navigating through their normal environment could potentially reveal previously unidentified cellular and molecular interactions integral to DRG and SG development. In this study, we follow fluorescently labeled trunk neural crest cells using a novel sagittal explant and time-lapse confocal microscopy. We show that along their dorsoventral migratory route, trunk neural crest cells are highly motile and interact extensively with neighboring cells and the environment, with many cells migrating in chain-like formations. Surprisingly, the segregated pattern of crest cell streams through the rostral somite is not maintained once these cells arrive alongside the dorsal aorta. Instead, neural crest cells disperse along the ventral outer border of the somite, interacting extensively with each other and their environment via dynamic extension and retraction of filopodia. Discrete sympathetic ganglia arise as a consequence of intermixing and selective reorganization of neural crest cells at the target site. The diverse cell migratory behaviors and active reorganization at the target suggest that cell-cell and cell-environment interactions are coordinated with dynamic molecular processes.
Development | 2006
Jennifer C. Kasemeier-Kulesa; Roger Bradley; Elena B. Pasquale; Frances Lefcort; Paul M. Kulesa
Previous studies have suggested that the segmental pattern of neural-crest-derived sympathetic ganglia arises as a direct result of signals that restrict neural crest cell migratory streams through rostral somite halves. We recently showed that the spatiotemporal pattern of chick sympathetic ganglia formation is a two-phase process. Neural crest cells migrate laterally to the dorsal aorta, then surprisingly spread out in the longitudinal direction, before sorting into discrete ganglia. Here, we investigate the function of two families of molecules that are thought to regulate cell sorting and aggregation. By blocking Eph/ephrins or N-cadherin function, we measure changes in neural crest cell migratory behaviors that lead to alterations in sympathetic ganglia formation using a recently developed sagittal slice explant culture and 3D confocal time-lapse imaging. Our results demonstrate that local inhibitory interactions within inter-ganglionic regions, mediated by Eph/ephrins, and adhesive cell-cell contacts at ganglia sites, mediated by N-cadherin, coordinate to sculpt discrete sympathetic ganglia.
The Journal of Neuroscience | 2010
Jennifer C. Kasemeier-Kulesa; Rebecca McLennan; Morgan H. Romine; Paul M. Kulesa; Frances Lefcort
The molecular mechanisms that sort migrating neural crest cells (NCCs) along a shared pathway into two functionally discrete structures, the dorsal root ganglia and sympathetic ganglia (SGs), are unknown. We report here that this patterning is attributable in part to differential expression of the chemokine receptor, CXCR4. We show that (1) a distinct subset of ventrally migrating NCCs express CXCR4 and this subset is destined to form the neural core of the sympathetic ganglia, and (2) the CXCR4 ligand, SDF-1, is a chemoattractant for NCCs in vivo and is expressed adjacent to the future SGs. Reduction of CXCR4 expression in NCCs disrupts their migration toward the future SGs, whereas overexpression of CXCR4 in non-SG-destined NCCs induces them to migrate aberrantly toward the SGs. These data are the first to demonstrate a major role for chemotaxis in the patterning of NCC migration and demonstrate the neural crest is composed of molecularly heterogeneous cell populations.
The Journal of Comparative Neurology | 2006
Shawn P. Hurley; Douglas O. Clary; Valérie Copié; Frances Lefcort
During embryonic development, complex events, such as cellular proliferation, differentiation, survival, and guidance of axons, are orchestrated and regulated by a variety of extracellular signals. Receptor tyrosine kinases mediate many of these events, with several playing critical roles in neuronal survival and axonal guidance. It is evident that not all the receptor tyrosine kinases that play key roles in regulating neuronal development have been identified. In this study, we have characterized the spatial‐temporal expression profile of a recently identified receptor tyrosine kinase, anaplastic lymphoma kinase (ALK), in embryonic chick by means of whole‐mount in situ hybridization in conjunction with immunohistochemistry. Our findings reveal that Alk is expressed in sympathetic and dorsal root ganglia as early as stage 19. In addition, mRNA is expressed from stage 23/24 (E4) to stage 39 (E13) in discrete motor neuron subsets of chick spinal cord along with a select group of muscles that are innervated by one of these particular motor neuron clusters. Expression within the spinal cord is coincident with the onset and duration of motor neuron programmed cell death and during the period of musculature innervation and synapse formation. Hence, the data presented here identify ALK as a novel candidate receptor for regulating critical events in the development of neurons in both the central and the peripheral nervous systems. J. Comp. Neurol. 495:202–212, 2006.
European Journal of Neuroscience | 1997
Alexander v. Holst; Frances Lefcort; Hermann Rohrer
Sympathetic neurons depend on the classical neurotrophin nerve growth factor (NGF) for survival by the time they innervate their targets, but not before. The acquisition of NGF responsiveness is thought to be controlled by environmental cues in sympathetic neurons. We have investigated the expression of the signal transducing NGF receptor trkA on mRNA and protein level during development of chick sympathetic neurons obtained from lumbosacral, paravertebral chain ganglia between embryonic days (E) 6.5 and 10. We demonstrate that trkA mRNA levels increase between E6.5 and E10, whereas the levels of trkC and p75 do not change. We also observed a similar increase in trkA protein during this time period. This increase correlates with the increase in NGF‐dependent survival of sympathetic neurons from the corresponding stages in vitro. To define the correlation between trkA expression and NGF‐mediated survival in more detail, trkA expression was adjusted to different levels by treatment with increasing concentrations of retinoic acid. We observed that small changes of trkA mRNA expression levels, below one order of magnitude, are decisive for the ability of immature sympathetic neurons to survive in the presence of NGF. A small and transient increase in trkA mRNA expression was also elicited in vivo by application of retinoids. These data provide evidence that sympathetic neurons upregulate the NGF receptor trkA and in this way acquire NGF‐dependency.
Nature Neuroscience | 2007
Lynn George; Marta Chaverra; Valerie Todd; Rusty Lansford; Frances Lefcort
Neural crest cells (NCCs) are a transient population of multipotent progenitors that give rise to numerous cell types in the embryo. An unresolved issue is the degree to which the fate of NCCs is specified prior to their emigration from the neural tube. In chick embryos, we identified a subpopulation of NCCs that, upon delamination, crossed the dorsal midline to colonize spatially discrete regions of the contralateral dorsal root ganglia (DRG), where they later gave rise to nearly half of the nociceptor sensory neuron population. Our data indicate that before emigration, this NCC subset is phenotypically distinct, with an intrinsic lineage potential that differs from its temporally synchronized, but ipsilaterally migrating, cohort. These findings not only identify a major source of progenitor cells for the pain- and temperature-sensing afferents, but also reveal a previously unknown migratory pathway for sensory-fated NCCs that requires the capacity to cross the embryonic midline.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Lynn George; Marta Chaverra; Lindsey Wolfe; Julian Thorne; Mattheson Close-Davis; Amy Eibs; Vickie Riojas; Andrea Grindeland; Miranda E. Orr; George A. Carlson; Frances Lefcort
Significance Familial dysautonomia (FD) is a devastating developmental peripheral autonomic and sensory neuropathy caused by a mutation in the gene inhibitor of kappa B kinase complex-associated protein (IKBKAP). It is marked by tachycardia, blood pressure lability, autonomic vomiting “crises,” and decreased pain and temperature sensation. FD is progressive, and affected individuals commonly die during early adulthood. To identify the cellular and molecular mechanisms that cause FD, we generated a mouse model for the disease in which Ikbkap expression is ablated in the neural crest lineage. This study is a mechanistic analysis of the cellular events that go awry in the developing peripheral nervous system in FD and identifies essential functions of IKAP protein in the peripheral nervous system. Familial dysautonomia (FD) is a devastating developmental and progressive peripheral neuropathy caused by a mutation in the gene inhibitor of kappa B kinase complex-associated protein (IKBKAP). To identify the cellular and molecular mechanisms that cause FD, we generated mice in which Ikbkap expression is ablated in the peripheral nervous system and identify the steps in peripheral nervous system development that are Ikbkap-dependent. We show that Ikbkap is not required for trunk neural crest migration or pathfinding, nor for the formation of dorsal root or sympathetic ganglia, or the adrenal medulla. Instead, Ikbkap is essential for the second wave of neurogenesis during which the majority of tropomyosin-related kinase A (TrkA+) nociceptors and thermoreceptors arise. In its absence, approximately half the normal complement of TrkA+ neurons are lost, which we show is partly due to p53-mediated premature differentiation and death of mitotically-active progenitors that express the paired-box gene Pax3 and give rise to the majority of TrkA+ neurons. By the end of sensory development, the number of TrkC neurons is significantly increased, which may result from an increase in Runx3+ cells. Furthermore, our data demonstrate that TrkA+ (but not TrkC+) sensory and sympathetic neurons undergo exacerbated Caspase 3-mediated programmed cell death in the absence of Ikbkap and that this death is not due to a reduction in nerve growth factor synthesis. In summary, these data suggest that FD does not result from a failure in trunk neural crest migration, but rather from a critical function for Ikbkap in TrkA progenitors and TrkA+ neurons.
The Journal of Comparative Neurology | 1999
Sarah L. Cochran; Jennifer S. Stone; Olivia Bermingham-McDonogh; Scott R. Akers; Frances Lefcort; Edwin W. Rubel
Neurotrophins and their cognate receptors are critical to normal nervous system development. Trk receptors are high‐affinity receptors for nerve‐growth factor (trkA), brain‐derived neurotrophic factor and neurotrophin‐4/5 (trkB), and neurotrophin‐3 (trkC). We examine the expression of these three neurotrophin tyrosine kinase receptors in the chick auditory system throughout most of development. Trks were localized in the auditory brainstem, the cochlear ganglion, and the basilar papilla of chicks from embryonic (E) day 5 to E21, by using antibodies and standard immunocytochemical methods. TrkB mRNA was localized in brainstem nuclei by in situ hybridization.TrkB and trkC are highly expressed in the embryonic auditory brainstem, and their patterns of expression are both spatially and temporally dynamic. During early brainstem development, trkB and trkC are localized in the neuronal cell bodies and in the surrounding neuropil of nucleus magnocellularis (NM) and nucleus laminaris (NL). During later development, trkC is expressed in the cell bodies of NM and NL, whereas trkB is expressed in the nerve calyces surrounding NM neurons and in the ventral, but not the dorsal, dendrites of NL. In the periphery, trkB and trkC are located in the cochlear ganglion neurons and in peripheral fibers innervating the basilar papilla and synapsing at the base of hair cells.The protracted expression of trks seen in our materials is consistent with the hypothesis that the neurotrophins/tyrosine kinase receptors play one or several roles in the development of auditory circuitry. In particular, the polarized expression of trkB in NL is coincident with refinement of NM terminal arborizations on NL. J. Comp. Neurol. 413:271–288, 1999.
Mechanisms of Development | 2002
Branden R Nelson; Sachiko Matsuhashi; Frances Lefcort
We have identified a secreted glycoprotein, neural epidermal growth factor-like like 2 (NELL2), in a screen designed to isolate molecules regulating sensory neuron genesis and differentiation in the dorsal root ganglia (DRG). In investigating NELL2 expression during embryogenesis, we demonstrate here that NELL2 is highly regulated spatially and temporally, being only transiently expressed in discrete regions of the central (CNS) and peripheral nervous systems (PNS) and in a subset of mesoderm derived structures during their peak periods of development. In the CNS and PNS, NELL2 is maximally expressed as motor and sensory neurons differentiate. Interestingly, its expression is restricted to sublineages of the neural crest, being strongly expressed throughout the immature DRG, but excluded from sympathetic ganglia. Similarly during muscle development, NELL2 is specifically expressed by hypaxial muscle precursor cells in the differentiating somite and derivatives in the forelimbs and body wall, but not by epaxial muscle precursors. Furthermore, NELL2 is differentially regulated in the CNS and PNS; in the CNS, NELL2 is only expressed by nascent, post-mitotic neurons as they commence their differentiation, yet in the PNS, NELL2 is expressed by subsets of progenitor cells in addition to nascent neurons. Based on this restricted spatial and temporal expression pattern, functional studies are in progress to determine NELL2s role during neuronal differentiation in both the PNS and CNS.
Molecular and Cellular Neuroscience | 2004
Katherine M Nielsen; Martha Chaverra; Sharon J. Hapner; Branden R Nelson; Valerie Todd; Richard E. Zigmond; Frances Lefcort
Developing neurons encounter a panoply of extracellular signals as they differentiate. A major goal is to identify these extrinsic cues and define the mechanisms by which neurons simultaneously integrate stimulation by multiple factors yet initiate one specific biological response. Factors that are known to exert potent activities in the developing nervous system include the NGF family of neurotrophic factors, ciliary neurotrophic factor (CNTF), and pituitary adenylate cyclase-activating peptide (PACAP). Here we demonstrate that PACAP promotes the differentiation of nascent dorsal root ganglion (DRG) neurons in that it increases both the number of neural-marker-positive cells and axonogenesis without affecting the proliferation of neural progenitor cells. This response is mediated through the PAC1 receptor and requires MAP kinase activation. Moreover, we find that, in the absence of exogenously added PACAP, blockade of the PAC1 receptor inhibits neuronal differentiation. These data coupled with our finding that both PACAP and the PAC1 receptor are expressed during the peak period of neuronal differentiation in the DRG suggest that PACAP functions in vivo to promote the differentiation of nascent sensory neurons. Interestingly, we also demonstrate that the neurotrophic factors NT-3 and CNTF completely block the PACAP-induced neuronal differentiation. This points to the intricate integration of cellular signals by nascent neurons and, to our knowledge, is the first evidence for neurotrophic factor abrogation of a pathway regulated by G-protein-coupled receptors (GPCRs).