Marta Chaverra
Montana State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marta Chaverra.
Plant Molecular Biology | 1995
Russell R. Johnson; Harwood J. Cranston; Marta Chaverra; William E. Dyer
The molecular regulation of seed dormancy was investigated using differential display to visualize and isolate cDNAs representing differentially expressed genes during early imbibition of dormant and nondormant Avena fatua L. embryos. Of about 3000 cDNA bands examined, 5 cDNAs hybridized with mRNAs exhibiting dormancy-associated expression patterns during the first 48 h of imbibition, while many more nondormancy-associated cDNAs were observed. Dormancy-associated clone AFD1 hybridized with a 1.5 kb mRNA barely detectable in dry dormant and nondormant embryos that became more abundant in dormant embryos after 24 h of imbibition. Clone AFD2 hybridized with two mRNAs, a 1.3 kb message constitutively expressed in dormant and nondormant embryos and a 0.9 kb message present at higher levels in dormant embryos after 3 h of imbibition. Nondormancy-associated clones AFN1, AFN2 and AFN3 hybridized with 1.5 kb, 1.7 kb and 1.1 kb mRNAs, respectively, that were more abundant in nondormant embryos during imbibition. Expression patterns of some mRNAs in dormant embryos induced to germinate by GA3 treatment were different than water controls, but were not identical to those observed in nondormant embryos. DNA sequence analysis revealed 76% sequence identity between clone AFN3 and a Citrus sinensis glutathione peroxidase-like cDNA, while significant sequence similarities with known genes were not found for other clones. Southern hybridization analyses showed that all clones represent low (1 to 4) copy number genes.
Nature Neuroscience | 2007
Lynn George; Marta Chaverra; Valerie Todd; Rusty Lansford; Frances Lefcort
Neural crest cells (NCCs) are a transient population of multipotent progenitors that give rise to numerous cell types in the embryo. An unresolved issue is the degree to which the fate of NCCs is specified prior to their emigration from the neural tube. In chick embryos, we identified a subpopulation of NCCs that, upon delamination, crossed the dorsal midline to colonize spatially discrete regions of the contralateral dorsal root ganglia (DRG), where they later gave rise to nearly half of the nociceptor sensory neuron population. Our data indicate that before emigration, this NCC subset is phenotypically distinct, with an intrinsic lineage potential that differs from its temporally synchronized, but ipsilaterally migrating, cohort. These findings not only identify a major source of progenitor cells for the pain- and temperature-sensing afferents, but also reveal a previously unknown migratory pathway for sensory-fated NCCs that requires the capacity to cross the embryonic midline.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Lynn George; Marta Chaverra; Lindsey Wolfe; Julian Thorne; Mattheson Close-Davis; Amy Eibs; Vickie Riojas; Andrea Grindeland; Miranda E. Orr; George A. Carlson; Frances Lefcort
Significance Familial dysautonomia (FD) is a devastating developmental peripheral autonomic and sensory neuropathy caused by a mutation in the gene inhibitor of kappa B kinase complex-associated protein (IKBKAP). It is marked by tachycardia, blood pressure lability, autonomic vomiting “crises,” and decreased pain and temperature sensation. FD is progressive, and affected individuals commonly die during early adulthood. To identify the cellular and molecular mechanisms that cause FD, we generated a mouse model for the disease in which Ikbkap expression is ablated in the neural crest lineage. This study is a mechanistic analysis of the cellular events that go awry in the developing peripheral nervous system in FD and identifies essential functions of IKAP protein in the peripheral nervous system. Familial dysautonomia (FD) is a devastating developmental and progressive peripheral neuropathy caused by a mutation in the gene inhibitor of kappa B kinase complex-associated protein (IKBKAP). To identify the cellular and molecular mechanisms that cause FD, we generated mice in which Ikbkap expression is ablated in the peripheral nervous system and identify the steps in peripheral nervous system development that are Ikbkap-dependent. We show that Ikbkap is not required for trunk neural crest migration or pathfinding, nor for the formation of dorsal root or sympathetic ganglia, or the adrenal medulla. Instead, Ikbkap is essential for the second wave of neurogenesis during which the majority of tropomyosin-related kinase A (TrkA+) nociceptors and thermoreceptors arise. In its absence, approximately half the normal complement of TrkA+ neurons are lost, which we show is partly due to p53-mediated premature differentiation and death of mitotically-active progenitors that express the paired-box gene Pax3 and give rise to the majority of TrkA+ neurons. By the end of sensory development, the number of TrkC neurons is significantly increased, which may result from an increase in Runx3+ cells. Furthermore, our data demonstrate that TrkA+ (but not TrkC+) sensory and sympathetic neurons undergo exacerbated Caspase 3-mediated programmed cell death in the absence of Ikbkap and that this death is not due to a reduction in nerve growth factor synthesis. In summary, these data suggest that FD does not result from a failure in trunk neural crest migration, but rather from a critical function for Ikbkap in TrkA progenitors and TrkA+ neurons.
PLOS ONE | 2012
Barbara J. Hunnicutt; Marta Chaverra; Lynn George; Frances Lefcort
Familial Dysautonomia (FD; Hereditary Sensory Autonomic Neuropathy; HSAN III) manifests from a failure in development of the peripheral sensory and autonomic nervous systems. The disease results from a point mutation in the IKBKAP gene, which encodes the IKAP protein, whose function is still unresolved in the developing nervous system. Since the neurons most severely depleted in the disease derive from the neural crest, and in light of data identifying a role for IKAP in cell motility and migration, it has been suggested that FD results from a disruption in neural crest migration. To determine the function of IKAP during development of the nervous system, we (1) first determined the spatial-temporal pattern of IKAP expression in the developing peripheral nervous system, from the onset of neural crest migration through the period of programmed cell death in the dorsal root ganglia, and (2) using RNAi, reduced expression of IKBKAP mRNA in the neural crest lineage throughout the process of dorsal root ganglia (DRG) development in chick embryos in ovo. Here we demonstrate that IKAP is not expressed by neural crest cells and instead is expressed as neurons differentiate both in the CNS and PNS, thus the devastation of the PNS in FD could not be due to disruptions in neural crest motility or migration. In addition, we show that alterations in the levels of IKAP, through both gain and loss of function studies, perturbs neuronal polarity, neuronal differentiation and survival. Thus IKAP plays pleiotropic roles in both the peripheral and central nervous systems.
Weed Science | 2005
Anthony J. Kern; Marta Chaverra; Harwood J. Cranston; William E. Dyer
Abstract The herbicide resistance to dicamba (HRd) biotype of kochia is resistant to several auxinic herbicides and is impaired in shoot gravitropism and other auxin-mediated responses. To better characterize the biotype and investigate its mechanism of resistance, we used messenger RNA (mRNA) differential display to compare patterns of dicamba-induced gene expression in HRd and susceptible (S1) plants. More than 60,000 complementary DNA fragments were generated and examined, 106 of which were isolated and used as probes on Northern blots to confirm gene expression levels. Steady-state levels of > 90% of mRNAs did not change after dicamba application. However, several mRNAs were detected whose levels were decreased, increased, or differentially regulated between the biotypes within minutes of dicamba treatment. The abundance of three mRNAs decreased after treatment, two of which had significant sequence similarity to choline monooxygenase and 5,10-methylenetetrahydrofolate reductase, respectively. Conversely, increased expression levels were observed for a putative chloride channel protein, 1-aminocyclopropane-1-carboxylate synthase, and an unknown gene. Genes differentially expressed between HRd and S1 plants included those similar to a putative translation initiation factor, xyloglucan endotransglycosylase, and a hypothetical protein cloned from several organisms. The results demonstrate that mRNA differential display is a useful technique for discovering genes that are rapidly regulated as part of a physiological response, and that this approach may provide insight into the mechanism of auxinic herbicide resistance in kochia. Nomenclature: Dicamba; kochia, Kochia scoparia L. Schrad. KCHSC.
Disease Models & Mechanisms | 2017
Marta Chaverra; Lynn George; Marc Mergy; Hannah Waller; Katharine Kujawa; Connor Murnion; Ezekiel Sharples; Julian Thorne; Nathaniel Podgajny; Andrea Grindeland; Yumi Ueki; Steven Eiger; Cassie Cusick; A.Michael Babcock; George A. Carlson; Frances Lefcort
ABSTRACT Hereditary sensory and autonomic neuropathies (HSANs) are a genetically and clinically diverse group of disorders defined by peripheral nervous system (PNS) dysfunction. HSAN type III, known as familial dysautonomia (FD), results from a single base mutation in the gene IKBKAP that encodes a scaffolding unit (ELP1) for a multi-subunit complex known as Elongator. Since mutations in other Elongator subunits (ELP2 to ELP4) are associated with central nervous system (CNS) disorders, the goal of this study was to investigate a potential requirement for Ikbkap in the CNS of mice. The sensory and autonomic pathophysiology of FD is fatal, with the majority of patients dying by age 40. While signs and pathology of FD have been noted in the CNS, the clinical and research focus has been on the sensory and autonomic dysfunction, and no genetic model studies have investigated the requirement for Ikbkap in the CNS. Here, we report, using a novel mouse line in which Ikbkap is deleted solely in the nervous system, that not only is Ikbkap widely expressed in the embryonic and adult CNS, but its deletion perturbs both the development of cortical neurons and their survival in adulthood. Primary cilia in embryonic cortical apical progenitors and motile cilia in adult ependymal cells are reduced in number and disorganized. Furthermore, we report that, in the adult CNS, both autonomic and non-autonomic neuronal populations require Ikbkap for survival, including spinal motor and cortical neurons. In addition, the mice developed kyphoscoliosis, an FD hallmark, indicating its neuropathic etiology. Ultimately, these perturbations manifest in a developmental and progressive neurodegenerative condition that includes impairments in learning and memory. Collectively, these data reveal an essential function for Ikbkap that extends beyond the peripheral nervous system to CNS development and function. With the identification of discrete CNS cell types and structures that depend on Ikbkap, novel strategies to thwart the progressive demise of CNS neurons in FD can be developed. Summary: Ikbkap is essential for normal CNS development, neuronal survival and behavior, adding to our understanding of the role of the Elongator complex in the mammalian CNS.
Plant Science | 1999
Harwood J. Cranston; Russell R. Johnson; Marta Chaverra; William E. Dyer
Abstract Differential display of mRNAs from embryos of Avena fatua L. caryopses was used to isolate an mRNA more abundant in nondormant than dormant caryopses during early imbibition. The DNA sequence of the corresponding 579 bp cDNA, termed Af SAR1, is 92% identical to an Arabidopsis cDNA encoding the monomeric GTP-binding protein sar1p. Predicted amino acid sequences of the four conserved GTP binding and hydrolysis domains in Af SAR1 are 100% identical to sar1p. Af SAR1 mRNA levels increased 6-fold or more than 10-fold in nondormant embryos during the first 48 h of imbibition in water or GA3, respectively. However, mRNA levels increased only slightly and transiently in dormant embryos imbibed in water. mRNA abundance was highest in meristematic and actively growing tissues of A. fatua seedlings. Af SAR1 belongs to a small (two to four members) gene family as judged by Southern hybridizations. Increased abundance of this mRNA during early germination and in actively growing tissues indicates that the respective protein is associated with rapid cell elongation, cell division and growth.
Nature Communications | 2018
Joy Goffena; Frances Lefcort; Yongqing Zhang; Elin Lehrmann; Marta Chaverra; Jehremy Felig; Joseph Walters; Richard Buksch; Kevin G. Becker; Lynn George
Familial dysautonomia (FD) results from mutation in IKBKAP/ELP1, a gene encoding the scaffolding protein for the Elongator complex. This highly conserved complex is required for the translation of codon-biased genes in lower organisms. Here we investigate whether Elongator serves a similar function in mammalian peripheral neurons, the population devastated in FD. Using codon-biased eGFP sensors, and multiplexing of codon usage with transcriptome and proteome analyses of over 6,000 genes, we identify two categories of genes, as well as specific gene identities that depend on Elongator for normal expression. Moreover, we show that multiple genes in the DNA damage repair pathway are codon-biased, and that with Elongator loss, their misregulation is correlated with elevated levels of DNA damage. These findings link Elongator’s function in the translation of codon-biased genes with both the developmental and neurodegenerative phenotypes of FD, and also clarify the increased risk of cancer associated with the disease.Familial dysautonomia is linked to mutations in IKBKAP, a scaffolding protein for the Elongator complex, which regulates codon-biased gene translation in yeast. Here the authors show in mammalian neurons that IKBKAP loss alters expression of codon-biased genes, including some involved in DNA damage.
International Journal of Developmental Neuroscience | 2015
Frances Lefcort; Marta Chaverra; Lynn George; George Carleson; Miranda E. Orr; Andrea Grindeland
Results: Ninety-one percent of studies may have underestimated intervention effects through the misspecification of the effect of age on delinquency outcomes. Of the 10 studies that did test for curvilinear and interaction effects, 80% had findings consistent with neuropsychosocial theories of age on delinquency. Conclusion: To account for normative maturation of frontal lobe areas involved in the development of self-regulation and the impact of these changes on delinquent behavior, the regular use of multiple age groups in analysis may increase both the precision with which intervention effects are measured and the identification of specific age groups with whom individual interventions are most effective.
Developmental Biology | 2004
Branden R Nelson; Karen Claes; Valerie Todd; Marta Chaverra; Frances Lefcort