Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frances M. Richards is active.

Publication


Featured researches published by Frances M. Richards.


Human Mutation | 1996

Germline mutations in the Von Hippel-Lindau disease (VHL) gene in families from North America, Europe, and Japan

Berton Zbar; Takeshi Kishida; Fan Chen; Laura S. Schmidt; Eamonn R. Maher; Frances M. Richards; Paul A. Crossey; Andrew R. Webster; Nabeel A. Affara; Malcolm A. Ferguson-Smith; Hiltrud Brauch; Damjan Glavač; Hartmut P. H. Neumann; Sam Tisherman; John J. Mulvihill; David J. Gross; Taro Shuin; Jean M. Whaley; Berndt Seizinger; Nickolai Kley; Sylviane Olschwang; Cécile Boisson; Stéphane Richard; C.H.M. Lips; W. Marston Linehan; Michael I. Lerman

Germline mutation analysis was performed in 469 VHL families from North America, Europe, and Japan. Germline mutations were identified in 300/469 (63%) of the families tested; 137 distinct intragenic germline mutations were detected. Most of the germline VHL mutations (124/137) occurred in 1–2 families; a few occured in four or more families. The common germline VHL mutations were: delPhe76, Asn78Ser, Arg161Stop, Arg167Gln, Arg167Trp, and Leu178Pro. In this large series, it was possible to compare the effects of identical germline mutations in different populations. Germline VHL mutations produced similar cancer phenotypes in Caucasian and Japanese VHL families. Germline VHL mutations were identified that produced three distinct cancer phenotypes: (1) renal carcinoma without pheochromocytoma, (2) renal carcinoma with pheochromocytoma, and (3) pheochromocytoma alone. The catalog of VHL germline mutations with phenotype information should be useful for diagnostic and prognostic studies of VHL and for studies of genotype‐phenotype correlations in VHL.


Journal of Medical Genetics | 1999

Familial gastric cancer: overview and guidelines for management*

Carlos Caldas; Fátima Carneiro; Henry T. Lynch; Jun Yokota; Georgia L. Wiesner; Steven M. Powell; Frank R. Lewis; David Huntsman; Paul Pharoah; Janusz Jankowski; Patrick MacLeod; Holger Vogelsang; Gisela Keller; Ken G M Park; Frances M. Richards; Eamonn R. Maher; Simon A. Gayther; Carla Oliveira; Nicola Grehan; Derek Wight; Raquel Seruca; Franco Roviello; Bruce A.J. Ponder; Charles E. Jackson

Families with autosomal dominant inherited predisposition to gastric cancer have been described. More recently, germlineE-cadherin/CDH1mutations have been identified in hereditary diffuse gastric cancer kindred. The need to have protocols to manage and counsel these families in the clinic led a group of geneticists, gastroenterologists, surgeons, oncologists, pathologists, and molecular biologists to convene a workshop to produce consensus statements and guidelines for familial gastric cancer. Review of the available cancer pathology from people belonging to families with documented germlineE-cadherin/CDH1mutations confirmed that the gastric cancers were all of the diffuse type. Criteria to define the different types of familial gastric cancer syndromes were agreed. Foremost among these criteria was that review of histopathology should be part of the evaluation of any family with aggregation of gastric cancer cases. Guidelines for genetic testing and counselling in hereditary diffuse gastric cancer were produced. Finally, a proposed strategy for clinical management in families with high penetrance autosomal dominant predisposition to gastric cancer was defined.


Journal of Medical Genetics | 1996

Phenotypic expression in von Hippel-Lindau disease: correlations with germline VHL gene mutations.

Eamonn R. Maher; Andrew R. Webster; Frances M. Richards; Jane Green; Paul A. Crossey; Stewart J. Payne; Anthony T. Moore

Von Hippel-Lindau disease is an autosomal dominantly inherited familial cancer syndrome predisposing to retinal and central nervous system haemangioblastomas, renal cell carcinoma, and phaeochromocytoma. VHL disease shows variable expression and interfamilial differences in predisposition to phaeochromocytoma. In a previous study of 65 VHL kindreds with defined VHL mutations we detected significant differences between VHL families with and without phaeochromocytoma such that missense mutations were more common and large deletions or protein truncating mutations less frequent in phaeochromocytoma positive families. To investigate the significance and cause of this association further, we studied 138 VHL kindreds for germline mutations and calculated the age related tumour risks for different classes of VHL gene mutations. Using SSCP, heteroduplex and Southern analysis we identified a germline VHL gene mutation in 101 families (73%). Direct sequencing of the VHL coding region further increased the mutation detection rate to 81%. In addition to precise presymptomatic diagnosis, identification of a VHL gene mutation can provide an indication of the likely phenotype. We found that large deletions and mutations predicted to cause a truncated protein were associated with a lower risk of phaeochromocytoma (6% and 9% at 30 and 50 years, respectively) than missense mutations (40% and 59%, respectively) and that missense mutations at codon 167 were associated with a high risk of phaeochromocytoma (53% and 82% at ages 30 and 50 years). Cumulative probabilities of renal cell carcinoma did not differ between the two groups (deletion/ truncation mutations: 8% and 60%, and missense mutations: 10% and 64% at ages 30 and 50 years, respectively). Age related risks for haemangioblastoma were similar in the two mutation groups, with the age related risks of cerebellar haemangioblastoma slightly less (35% and 64% v 38% and 75% at ages 30 and 50 years) and retinal haemangioblastoma slightly higher (45% and 72% v 37% and 64% at ages 30 and 50 years) in the missense mutation group than in the deletion/protein truncation group. These results provide valuable data for counselling VHL families and indicate that specific VHL mutations may be associated with different tumour susceptibility risks. There was no evidence of a generalised increase in age related tumour risks for missense mutations, suggesting that missense mutations predisposing to phaeochromocytoma have tissue specific effects, possibly because the VHL protein has several functions, the importance of which varies from tissue to tissue, or because the proteins which interact with VHL differ between different tissues.


Human Genetics | 1994

Molecular genetic investigations of the mechanism of tumourigenesis in von Hippel-Lindau disease: analysis of allele loss in VHL tumours

Paul A. Crossey; Keith Foster; Frances M. Richards; Maude E. Phipps; Farida Latif; Kalman Tory; Michael H. Jones; Elizabeth Bentley; Ram Kumar; Michael I. Lerman; Bert Zbar; Nabeel A. Affara; Malcolm A. Ferguson-Smith; Eamonn R. Maher

Von Hippel-Lindau (VHL) disease is a dominantly inherited familial cancer syndrome characterised by the development of retinal and central nervous system haemangioblastomas, renal cell carcinoma (RCC), phaeochromocytoma and pancreatic tumours. The VHL disease gene maps to chromosome 3p25-p26. To investigate the mechanism of tumourigenesis in VHL disease, we analysed 24 paired blood/tumour DNA samples from 20 VHL patients for allele loss on chromosome 3p and in the region of tumour suppressor genes on chromosomes 5, 11, 13, 17 and 22. Nine out of 24 tumours showed loss of heterozygosity (LOH) at at least one locus on chromosome 3p and in each case the LOH included the region to which the VHL gene has been mapped. Chromosome 3p allele loss was found in four tumour types (RCC, haemangioblastoma, phaeochromocytoma and pancreatic tumour) suggesting a common mechanism of tumourigenesis in all types of tumour in VHL disease. The smallest region of overlap was between D3S1038 and D3S18, a region that corresponds to the target region for the VHL gene from genetic linkage studies. The parental origin of the chromosome 3p25-p26 allele loss could be determined in seven tumours from seven familial cases; in each tumour, the allele lost had been inherited from the unaffected parent. Our results suggest that the VHL disease gene functions as a recessive tumour suppressor gene and that inactivation of both alleles of the VHL gene is the critical event in the pathogenesis of VHL neoplasms. Four VHL tumours showed LOH on other chromosomes (5q21, 13q, 17q) indicating that homozygous VHL gene mutations may be required but may not be sufficient for tumourigenesis in VHL disease.


British Journal of Cancer | 1994

Molecular genetic investigation of sporadic renal cell carcinoma: analysis of allele loss on chromosomes 3p, 5q, 11p, 17 and 22

K. Foster; Paul A. Crossey; P. Cairns; J. W. Hetherington; Frances M. Richards; Michael H. Jones; E. Bentley; Nabeel A. Affara; Malcolm A. Ferguson-Smith; Eamonn R. Maher

To investigate the role of tumour-suppressor genes on the short arm of chromosome 3 in the mechanism of tumorigenesis in non-familial renal cell carcinoma, we analysed 55 paired blood-tumour DNA samples for allele loss on chromosome 3p and in the region of known or putative tumour-suppressor genes on chromosomes 5, 11, 17 and 22. Sixty-four per cent (35/55) of informative tumours showed loss of heterozygosity (LOH) of at least one locus on the short arm of chromosome 3, compared with only 13% at the p53 tumour-suppressor gene and 6% at 17q21. LOH at chromosome 5q21 and 22q was uncommon (2-3%). Detailed analysis of the regions of LOH on chromosome 3p suggested that, in addition to the VHL gene in chromosome 3p25-p26, mutations in one or more tumour-suppressor genes in chromosome 3p13-p24 may be involved in the pathogenesis of sporadic renal cell carcinoma (RCC). We also confirmed previous suggestions that chromosome 3p allele loss is not a feature of papillary RCC (P < 0.05).


American Journal of Human Genetics | 1998

An Analysis of Phenotypic Variation in the Familial Cancer Syndrome von Hippel–Lindau Disease: Evidence for Modifier Effects

Andrew R. Webster; Frances M. Richards; Fiona E. MacRonald; Anthony T. Moore; Eamonn R. Maher

von Hippel-Lindau disease (VHL) is a dominantly inherited familial cancer syndrome predisposing to ocular and CNS hemangioblastomas, renal-cell carcinoma (RCC), and pheochromocytoma. Both interfamilial and intrafamilial variability in expression is well recognized. Interfamilial differences in pheochromocytoma susceptibility have been attributed to allelic heterogeneity such that specific missense germ-line mutations confer a high risk for this complication. However, in most cases, tumor susceptibility does not appear to be influenced by the type of underlying VHL mutation. To probe the causes of phenotypic variation, we examined 183 individuals with germ-line VHL gene mutations, for the presence and number of ocular tumors. The prevalence of ocular angiomatosis did not increase with age, and the distribution of these tumors in gene carriers was significantly different than the expected stochastic distributions. Individuals with ocular hemangioblastomas had a significantly increased incidence of cerebellar hemangioblastoma and RCC (hazard ratios 2.3 and 4.0, respectively). The number of ocular tumors was significantly correlated in individuals of 12 degree relatedness but not in more distantly related individuals. These findings suggest that the development of VHL ocular tumors is determined at an early age and is influenced by genetic and/or environmental modifier effects that act at multiple sites. Functional polymorphisms in the glutathione-S-transferase M1 gene (GSTM1) or the cytochrome P450 2D6 gene (CYP2D6) did not show a significant association with the severity of ocular or renal involvement.


Gut | 2014

SPARC independent drug delivery and antitumour effects of nab-paclitaxel in genetically engineered mice

Albrecht Neesse; Kristopher K. Frese; Derek S. Chan; Tashinga E. Bapiro; William J. Howat; Frances M. Richards; Volker Ellenrieder; Duncan I. Jodrell; David A. Tuveson

Design Pharmacokinetic and pharmacodynamic parameters of cremophor-paclitaxel, nab-paclitaxel (human-albumin-bound paclitaxel, Abraxane) and a novel mouse-albumin-bound paclitaxel (m-nab-paclitaxel) were evaluated in genetically engineered mouse models (GEMMs) by liquid chromatography-tandem mass spectrometry (LC-MS/MS), histological and biochemical analysis. Preclinical evaluation of m-nab-paclitaxel included assessment by three-dimensional high-resolution ultrasound and molecular analysis in a novel secreted protein acidic and rich in cysteine (SPARC)-deficient GEMM of pancreatic ductal adenocarcinoma (PDA). Results nab-Paclitaxel exerted its antitumoural effects in a dose-dependent manner and was associated with less toxicity compared with cremophor-paclitaxel. SPARC nullizygosity in a GEMM of PDA, KrasG12D;p53flox/−;p48Cre (KPfC), resulted in desmoplastic ductal pancreas tumours with impaired collagen maturation. Paclitaxel concentrations were significantly decreased in SPARC null plasma samples and tissues when administered as low-dose m-nab-paclitaxel. At the maximally tolerated dose, SPARC deficiency did not affect the intratumoural paclitaxel concentration, stromal deposition and the immediate therapeutic response. Conclusions nab-Paclitaxel accumulates and acts in a dose-dependent manner. The interaction of plasma SPARC and albumin-bound drugs is observed at low doses of nab-paclitaxel but is saturated at therapeutic doses in murine tumours. Thus, this study provides important information for future preclinical and clinical trials in PDA using nab-paclitaxel in combination with novel experimental and targeted agents.


Oncogene | 2002

Contribution of cyclin d1 ( CCND1 ) and E-cadherin ( CDH1 ) polymorphisms to familial and sporadic colorectal cancer

Timothy R. Porter; Frances M. Richards; Richard S. Houlston; D. Gareth Evans; Janusz Jankowski; Fiona Macdonald; Gail Norbury; Stewart J. Payne; Samantha Fisher; Ian Tomlinson; Eamonn R. Maher

The molecular basis for most non-HNPCC familial colorectal cancer cases is unknown, but there is increasing evidence that common genetic variants may play a role. We investigated the contribution of polymorphisms in two genes implicated in the pathogenesis of colorectal cancer, cyclin D1 (CCND1) and E-cadherin (CDH1), to familial and sporadic forms of the disease. The CCND1 870A/G polymorphism is thought to affect the expression of CCND1 through mRNA splicing and has been reported to modify the penetrance of HNPCC. Inactivation of E-cadherin is common in colorectal cancer, and truncating germline mutations have been reported to confer susceptibility to colorectal as well as diffuse gastric cancer. The −160A/C CDH1 polymorphism appears to affect expression of CDH1 and may therefore also confer an increased risk. We found a significantly higher frequency of CCND1 870A allele in 206 familial cases compared to 171 controls (P=0.03). Odds ratios in heterozygotes and homozygotes were 1.7 (95% CI: 1.0–2.66) and 1.8 (95% CI: 1.0–3.3) respectively. The difference was accounted for by an over-representation of A allele in non-HNPCC familial cases (P=0.007). Over-representation of the CCND1 A allele was also seen in sporadic colorectal cancer cases compared to controls but this did not attain statistical significance (P=0.08). No significant differences between the frequency of CDH1 −160A/C genotypes in familial, sporadic colorectal cancer cases and controls were seen, although a possible association between the low expressing A allele and right-sided tumours was detected in familial cases.


Journal of Clinical Pathology | 2004

Molecular genetic analysis of FIH-1, FH, and SDHB candidate tumour suppressor genes in renal cell carcinoma.

Mark R. Morris; Esther N Maina; Neil V. Morgan; Dean Gentle; D Astuti; Holger Moch; Takeshi Kishida; Masahiro Yao; P Schraml; Frances M. Richards; Farida Latif; Eamonn R. Maher

Background: Overexpression of the hypoxia inducible factor 1 (HIF-1) and HIF-2 transcription factors and the consequent upregulation of hypoxia inducible mRNAs is a feature of many human cancers and may be unrelated to tissue hypoxia. Thus, the VHL (von Hippel-Lindau) tumour suppressor gene (TSG) regulates HIF-1 and HIF-2 expression in normoxia by targeting the α subunits for ubiquitination and proteolysis. Inactivation of the VHL TSG in VHL tumours and in sporadic clear cell renal cell carcinoma (RCC) results in overexpression of HIF-1 and HIF-2. However, RCC without VHL inactivation may demonstrate HIF upregulation, suggesting that VHL independent pathways for HIF activation also exist. In RCC, three candidate HIF activating genes exist—FIH-1 (factor inhibiting HIF), SDHB, and FH—which may be dependent or independent of VHL inactivation. Aims: To investigate FIH-1, SDHB, and FH for somatic mutations in sporadic RCC. Methods: Gene mutation was analysed in primary RCCs (clear cell RCCs, papillary RCCs, and oncocytomas) and RCC cell lines. SDHB mutation analysis was performed by denaturing high performance liquid chromatography followed by direct sequencing of aberrant PCR products. FH and FIH-1 mutation analysis were performed by single stranded conformational polymorphism and direct sequencing of PCR products. Results: No mutations were identified in the three genes investigated. Conclusions: There was no evidence to suggest that somatic mutations occur in the FH, FIH-1, or SDHB TSGs in sporadic RCCs.


Chemistry & Biology | 2013

Design, synthesis, and biological evaluation of an allosteric inhibitor of HSET that targets cancer cells with supernumerary centrosomes.

Ciorsdaidh A. Watts; Frances M. Richards; Andreas Bender; Peter J. Bond; Oliver Korb; Oliver Kern; Michelle Riddick; Paul Owen; Rebecca M. Myers; Jordan W. Raff; Fanni Gergely; Duncan I. Jodrell; Steven V. Ley

Summary Centrosomes associate with spindle poles; thus, the presence of two centrosomes promotes bipolar spindle assembly in normal cells. Cancer cells often contain supernumerary centrosomes, and to avoid multipolar mitosis and cell death, these are clustered into two poles by the microtubule motor protein HSET. We report the discovery of an allosteric inhibitor of HSET, CW069, which we designed using a methodology on an interface of chemistry and biology. Using this approach, we explored millions of compounds in silico and utilized convergent syntheses. Only compound CW069 showed marked activity against HSET in vitro. The inhibitor induced multipolar mitoses only in cells containing supernumerary centrosomes. CW069 therefore constitutes a valuable tool for probing HSET function and, by reducing the growth of cells containing supernumerary centrosomes, paves the way for new cancer therapeutics.

Collaboration


Dive into the Frances M. Richards's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Farida Latif

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Berton Zbar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michael I. Lerman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge