Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul A. Crossey is active.

Publication


Featured researches published by Paul A. Crossey.


Human Mutation | 1996

Germline mutations in the Von Hippel-Lindau disease (VHL) gene in families from North America, Europe, and Japan

Berton Zbar; Takeshi Kishida; Fan Chen; Laura S. Schmidt; Eamonn R. Maher; Frances M. Richards; Paul A. Crossey; Andrew R. Webster; Nabeel A. Affara; Malcolm A. Ferguson-Smith; Hiltrud Brauch; Damjan Glavač; Hartmut P. H. Neumann; Sam Tisherman; John J. Mulvihill; David J. Gross; Taro Shuin; Jean M. Whaley; Berndt Seizinger; Nickolai Kley; Sylviane Olschwang; Cécile Boisson; Stéphane Richard; C.H.M. Lips; W. Marston Linehan; Michael I. Lerman

Germline mutation analysis was performed in 469 VHL families from North America, Europe, and Japan. Germline mutations were identified in 300/469 (63%) of the families tested; 137 distinct intragenic germline mutations were detected. Most of the germline VHL mutations (124/137) occurred in 1–2 families; a few occured in four or more families. The common germline VHL mutations were: delPhe76, Asn78Ser, Arg161Stop, Arg167Gln, Arg167Trp, and Leu178Pro. In this large series, it was possible to compare the effects of identical germline mutations in different populations. Germline VHL mutations produced similar cancer phenotypes in Caucasian and Japanese VHL families. Germline VHL mutations were identified that produced three distinct cancer phenotypes: (1) renal carcinoma without pheochromocytoma, (2) renal carcinoma with pheochromocytoma, and (3) pheochromocytoma alone. The catalog of VHL germline mutations with phenotype information should be useful for diagnostic and prognostic studies of VHL and for studies of genotype‐phenotype correlations in VHL.


Journal of Medical Genetics | 1996

Phenotypic expression in von Hippel-Lindau disease: correlations with germline VHL gene mutations.

Eamonn R. Maher; Andrew R. Webster; Frances M. Richards; Jane Green; Paul A. Crossey; Stewart J. Payne; Anthony T. Moore

Von Hippel-Lindau disease is an autosomal dominantly inherited familial cancer syndrome predisposing to retinal and central nervous system haemangioblastomas, renal cell carcinoma, and phaeochromocytoma. VHL disease shows variable expression and interfamilial differences in predisposition to phaeochromocytoma. In a previous study of 65 VHL kindreds with defined VHL mutations we detected significant differences between VHL families with and without phaeochromocytoma such that missense mutations were more common and large deletions or protein truncating mutations less frequent in phaeochromocytoma positive families. To investigate the significance and cause of this association further, we studied 138 VHL kindreds for germline mutations and calculated the age related tumour risks for different classes of VHL gene mutations. Using SSCP, heteroduplex and Southern analysis we identified a germline VHL gene mutation in 101 families (73%). Direct sequencing of the VHL coding region further increased the mutation detection rate to 81%. In addition to precise presymptomatic diagnosis, identification of a VHL gene mutation can provide an indication of the likely phenotype. We found that large deletions and mutations predicted to cause a truncated protein were associated with a lower risk of phaeochromocytoma (6% and 9% at 30 and 50 years, respectively) than missense mutations (40% and 59%, respectively) and that missense mutations at codon 167 were associated with a high risk of phaeochromocytoma (53% and 82% at ages 30 and 50 years). Cumulative probabilities of renal cell carcinoma did not differ between the two groups (deletion/ truncation mutations: 8% and 60%, and missense mutations: 10% and 64% at ages 30 and 50 years, respectively). Age related risks for haemangioblastoma were similar in the two mutation groups, with the age related risks of cerebellar haemangioblastoma slightly less (35% and 64% v 38% and 75% at ages 30 and 50 years) and retinal haemangioblastoma slightly higher (45% and 72% v 37% and 64% at ages 30 and 50 years) in the missense mutation group than in the deletion/protein truncation group. These results provide valuable data for counselling VHL families and indicate that specific VHL mutations may be associated with different tumour susceptibility risks. There was no evidence of a generalised increase in age related tumour risks for missense mutations, suggesting that missense mutations predisposing to phaeochromocytoma have tissue specific effects, possibly because the VHL protein has several functions, the importance of which varies from tissue to tissue, or because the proteins which interact with VHL differ between different tissues.


Journal of Medical Genetics | 1995

Mutations in the RET proto-oncogene and the von Hippel-Lindau disease tumour suppressor gene in sporadic and syndromic phaeochromocytomas.

Charis Eng; Paul A. Crossey; Lois M. Mulligan; Catherine S. Healey; Carol Houghton; A Prowse; S L Chew; P L Dahia; J L O'Riordan; Sergio P. A. Toledo

Phaeochromocytomas may occur sporadically, or as part of the inherited cancer syndromes multiple endocrine neoplasia (MEN) type 2, von Hippel-Lindau disease (VHL), and, rarely, in type 1 neurofibromatosis. In MEN 2, germline missense mutations have been found in one of eight codons within exons 10, 11, 13, 14, and 16 of the RET proto-oncogene. In VHL, germline mutations within one of the three exons are responsible for the majority of cases. To determine if somatic mutations similar to those seen in the germline in MEN 2 or VHL disease play a role in the pathogenesis of sporadic or familial phaeochromocytomas, we analysed 48 sporadic tumours and tumours from 17 MEN 2 and five VHL patients for mutations in RET exons 9, 10, 11, 13, 14, 15, and 16, and the entire coding sequence of VHL. Five of 48 sporadic phaeochromocytomas had RET mutations within exons 10, 11, and 16. Of these, one was proven to be germline and two were proven to be somatic mutations. Four of 48 had VHL mutations; these included both the bilateral cases in the series (one was proven to be a germline mutation) and two others, of which one was proven somatic.


Diabetes | 2007

IGF-Binding Protein-2 Protects Against the Development of Obesity and Insulin Resistance

Stephen B. Wheatcroft; Mark T. Kearney; Ajay M. Shah; Vivienne Ezzat; John R. Miell; Michael Modo; Stephen R. Williams; Will P. Cawthorn; Gema Medina-Gomez; Antonio Vidal-Puig; Jaswinder K. Sethi; Paul A. Crossey

Proliferation of adipocyte precursors and their differentiation into mature adipocytes contributes to the development of obesity in mammals. IGF-I is a potent mitogen and important stimulus for adipocyte differentiation. The biological actions of IGFs are closely regulated by a family of IGF-binding proteins (IGFBPs), which exert predominantly inhibitory effects. IGFBP-2 is the principal binding protein secreted by differentiating white preadipocytes, suggesting a potential role in the development of obesity. We have generated transgenic mice overexpressing human IGFBP-2 under the control of its native promoter, and we show that overexpression of IGFBP-2 is associated with reduced susceptibility to obesity and improved insulin sensitivity. Whereas wild-type littermates developed glucose intolerance and increased blood pressure with aging, mice overexpressing IGFBP-2 were protected. Furthermore, when fed a high-fat/high-energy diet, IGFBP-2–overexpressing mice were resistant to the development of obesity and insulin resistance. This lean phenotype was associated with decreased leptin levels, increased glucose sensitivity, and lower blood pressure compared with wild-type animals consuming similar amounts of high-fat diet. Our in vitro data suggest a direct effect of IGFBP-2 preventing adipogenesis as indicated by the ability of recombinant IGFBP-2 to impair 3T3-L1 differentiation. These findings suggest an important, novel role for IGFBP-2 in obesity prevention.


Diabetes | 2008

Effect of Endothelium-Specific Insulin Resistance on Endothelial Function In Vivo

Edward R. Duncan; Paul A. Crossey; Simon M. Walker; Narayana Anilkumar; Lucilla Poston; Gillian Douglas; Vivienne Ezzat; Stephen B. Wheatcroft; Ajay M. Shah; Mark Kearney

OBJECTIVE—Insulin resistance is an independent risk factor for the development of cardiovascular atherosclerosis. A key step in the development of atherosclerosis is endothelial dysfunction, manifest by a reduction in bioactivity of nitric oxide (NO). Insulin resistance is associated with endothelial dysfunction; however, the mechanistic relationship between these abnormalities and the role of impaired endothelial insulin signaling versus global insulin resistance remains unclear. RESEARCH DESIGN AND METHODS—To examine the effects of insulin resistance specific to the endothelium, we generated a transgenic mouse with endothelium-targeted overexpression of a dominant-negative mutant human insulin receptor (ESMIRO). This receptor has a mutation (Ala-Thr1134) in its tyrosine kinase domain that disrupts insulin signaling. Humans with the Thr1134 mutation are insulin resistant. We performed metabolic and vascular characterization of this model. RESULTS—ESMIRO mice had preserved glucose homeostasis and were normotensive. They had significant endothelial dysfunction as evidenced by blunted aortic vasorelaxant responses to acetylcholine (ACh) and calcium ionophore. Furthermore, the vascular action of insulin was lost in ESMIRO mice, and insulin-induced endothelial NO synthase (eNOS) phosphorylation was blunted. Despite this phenotype, ESMIRO mice demonstrate similar levels of eNOS mRNA and protein expression to wild type. ACh-induced relaxation was normalized by the superoxide dismutase mimetic, Mn(III)tetrakis(1-methyl-4-pyridyl) porphyrin pentachloride. Endothelial cells of ESMIRO mice showed increased superoxide generation and increased mRNA expression of the NADPH oxidase isoforms Nox2 and Nox4. CONCLUSIONS—Selective endothelial insulin resistance is sufficient to induce a reduction in NO bioavailability and endothelial dysfunction that is secondary to increased generation of reactive oxygen species. This arises independent of a significant metabolic phenotype.


Human Genetics | 1994

Molecular genetic investigations of the mechanism of tumourigenesis in von Hippel-Lindau disease: analysis of allele loss in VHL tumours

Paul A. Crossey; Keith Foster; Frances M. Richards; Maude E. Phipps; Farida Latif; Kalman Tory; Michael H. Jones; Elizabeth Bentley; Ram Kumar; Michael I. Lerman; Bert Zbar; Nabeel A. Affara; Malcolm A. Ferguson-Smith; Eamonn R. Maher

Von Hippel-Lindau (VHL) disease is a dominantly inherited familial cancer syndrome characterised by the development of retinal and central nervous system haemangioblastomas, renal cell carcinoma (RCC), phaeochromocytoma and pancreatic tumours. The VHL disease gene maps to chromosome 3p25-p26. To investigate the mechanism of tumourigenesis in VHL disease, we analysed 24 paired blood/tumour DNA samples from 20 VHL patients for allele loss on chromosome 3p and in the region of tumour suppressor genes on chromosomes 5, 11, 13, 17 and 22. Nine out of 24 tumours showed loss of heterozygosity (LOH) at at least one locus on chromosome 3p and in each case the LOH included the region to which the VHL gene has been mapped. Chromosome 3p allele loss was found in four tumour types (RCC, haemangioblastoma, phaeochromocytoma and pancreatic tumour) suggesting a common mechanism of tumourigenesis in all types of tumour in VHL disease. The smallest region of overlap was between D3S1038 and D3S18, a region that corresponds to the target region for the VHL gene from genetic linkage studies. The parental origin of the chromosome 3p25-p26 allele loss could be determined in seven tumours from seven familial cases; in each tumour, the allele lost had been inherited from the unaffected parent. Our results suggest that the VHL disease gene functions as a recessive tumour suppressor gene and that inactivation of both alleles of the VHL gene is the critical event in the pathogenesis of VHL neoplasms. Four VHL tumours showed LOH on other chromosomes (5q21, 13q, 17q) indicating that homozygous VHL gene mutations may be required but may not be sufficient for tumourigenesis in VHL disease.


Journal of Clinical Investigation | 2002

Altered placental development and intrauterine growth restriction in IGF binding protein-1 transgenic mice

Paul A. Crossey; Claire C. Pillai; John P. Miell

IGF binding protein-1 (IGFBP-1) is a secretory product of decidualized endometrium and a major constituent of amniotic fluid. It is thought to modulate the actions of the IGFs on trophoblast cells and is therefore potentially important in regulating placental development and fetal growth. To investigate this hypothesis, we have studied the effects of decidual IGFBP-1 excess on fetoplacental growth in transgenic mice overexpressing human IGFBP-1. Endogenous fetal IGFBP-1 overexpression is associated with a transient impairment of fetal growth in midgestation. Maternal decidual IGFBP-1 excess is also associated with impaired fetal growth in midgestation independent of fetal genotype, indicating placental insufficiency. Our data also demonstrate that amniotic fluid IGFBP-1 is derived almost exclusively from maternal sources. Decidual IGFBP-1 overexpression has a marked effect on placental development. Placental morphology is abnormal in transgenic females due to altered trophoblast invasion and differentiation. These changes result in an increase in placental mass throughout pregnancy. This study provides the first compelling in vivo evidence that IGFBP-1 plays a role in placentation and suggests that IGFBP-1 has a pathological role in preeclampsia, a disorder characterized by shallow uterine invasion and altered placental development.


British Journal of Cancer | 1994

Molecular genetic investigation of sporadic renal cell carcinoma: analysis of allele loss on chromosomes 3p, 5q, 11p, 17 and 22

K. Foster; Paul A. Crossey; P. Cairns; J. W. Hetherington; Frances M. Richards; Michael H. Jones; E. Bentley; Nabeel A. Affara; Malcolm A. Ferguson-Smith; Eamonn R. Maher

To investigate the role of tumour-suppressor genes on the short arm of chromosome 3 in the mechanism of tumorigenesis in non-familial renal cell carcinoma, we analysed 55 paired blood-tumour DNA samples for allele loss on chromosome 3p and in the region of known or putative tumour-suppressor genes on chromosomes 5, 11, 17 and 22. Sixty-four per cent (35/55) of informative tumours showed loss of heterozygosity (LOH) of at least one locus on the short arm of chromosome 3, compared with only 13% at the p53 tumour-suppressor gene and 6% at 17q21. LOH at chromosome 5q21 and 22q was uncommon (2-3%). Detailed analysis of the regions of LOH on chromosome 3p suggested that, in addition to the VHL gene in chromosome 3p25-p26, mutations in one or more tumour-suppressor genes in chromosome 3p13-p24 may be involved in the pathogenesis of sporadic renal cell carcinoma (RCC). We also confirmed previous suggestions that chromosome 3p allele loss is not a feature of papillary RCC (P < 0.05).


Journal of Medical Genetics | 1995

Molecular genetic diagnosis of von Hippel-Lindau disease in familial phaeochromocytoma.

Paul A. Crossey; Charis Eng; Maria Ginalska-Malinowska; Thomas Lennard; Diana C. Wheeler; Bruce A.J. Ponder; Eamonn R. Maher

Inherited predisposition to phaeochromocytoma is seen in multiple endocrine neoplasia type 2 syndromes, von Hippel-Lindau (VHL) disease, and neuro-fibromatosis type 1. In addition familial phaeochromocytoma alone has been reported. To investigate the genetic basis for familial phaeochromocytoma alone, we screened three affected kindreds for mutations in the RET proto-oncogene and the VHL tumour suppressor gene. We did not detect MEN 2 associated RET mutations in any family, but missense VHL gene mutations (V155L and R238W) were identified in two kindreds with no clinical evidence of VHL disease. Patients with familial, multiple, or early onset phaeochromocytoma should be investigated for germline VHL and RET gene mutations as the molecular diagnosis of multisystem familial cancer syndromes enables appropriate counselling and screening to be provided.


Journal of Medical Genetics | 1993

Detailed genetic mapping of the von Hippel-Lindau disease tumour suppressor gene.

Frances M. Richards; Eamonn R. Maher; Farida Latif; Maude E. Phipps; K Tory; M. Lush; Paul A. Crossey; B. Oostra; P Enblad; K H Gustavson

Von Hippel-Lindau (VHL) disease is an autosomal dominant inherited familial cancer syndrome characterised by a predisposition to the development of retinal, cerebellar, and spinal haemangioblastomas, renal cell carcinoma, and phaeochromocytoma. The gene for VHL disease has been mapped to chromosome 3p25-p26 and flanking markers identified. We report the detailed genetic mapping of the VHL disease locus in 38 families. Significant linkage was detected between VHL disease and D3S601 (Zmax = 18.86 at theta = 0.0, CI 0.0-0.025), D3S18 (Zmax = 11.42 at theta = 0.03, CI 0.005-0.08), RAF1 (Zmax = 11.02 at theta = 0.04, CI 0.007-0.01), and D3S1250 (Zmax = 4.73 at theta = 0.05, CI 0.005-0.15). Multipoint linkage analysis mapped the VHL disease locus between D3S1250 and D3S18 close to D3S601. There was no evidence of locus heterogeneity. This study has (1) confirmed the tight linkage between VHL disease and D3S601, (2) identified D3S1250 as the first marker telomeric to RAF1 which maps centromeric to the VHL disease gene, and (3) narrowed the target region for isolation of the VHL disease gene by positional cloning techniques to a 4 cM interval between D3S1250 and D3S18. These findings will improve the clinical management of families with VHL disease by improving the accuracy of presymptomatic diagnosis using linked DNA markers, and will enhance progress towards isolating the VHL disease gene.

Collaboration


Dive into the Paul A. Crossey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S B Wheatcroft

Leeds Teaching Hospitals NHS Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael I. Lerman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Derek P. Brazil

Queen's University Belfast

View shared research outputs
Researchain Logo
Decentralizing Knowledge