Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesc Viñals is active.

Publication


Featured researches published by Francesc Viñals.


Cancer Cell | 2009

Antiangiogenic Therapy Elicits Malignant Progression of Tumors to Increased Local Invasion and Distant Metastasis

Marta Páez-Ribes; Elizabeth Allen; James Hudock; Takaaki Takeda; Hiroaki Okuyama; Francesc Viñals; Masahiro Inoue; Gabriele Bergers; Douglas Hanahan; Oriol Casanovas

Multiple angiogenesis inhibitors have been therapeutically validated in preclinical cancer models, and several in clinical trials. Here we report that angiogenesis inhibitors targeting the VEGF pathway demonstrate antitumor effects in mouse models of pancreatic neuroendocrine carcinoma and glioblastoma but concomitantly elicit tumor adaptation and progression to stages of greater malignancy, with heightened invasiveness and in some cases increased lymphatic and distant metastasis. Increased invasiveness is also seen by genetic ablation of the Vegf-A gene in both models, substantiating the results of the pharmacological inhibitors. The realization that potent angiogenesis inhibition can alter the natural history of tumors by increasing invasion and metastasis warrants clinical investigation, as the prospect has important implications for the development of enduring antiangiogenic therapies.


Journal of Biological Chemistry | 1996

Phosphatidylinositol 3-Kinase Inhibitors Block Differentiation of Skeletal Muscle Cells

Perla Kaliman; Francesc Viñals; Xavier Testar; Manuel Palacín; Antonio Zorzano

Skeletal muscle differentiation involves myoblast alignment, elongation, and fusion into multinucleate myotubes, together with the induction of regulatory and structural muscle-specific genes. Here we show that two phosphatidylinositol 3-kinase inhibitors, LY294002 and wortmannin, blocked an essential step in the differentiation of two skeletal muscle cell models. Both inhibitors abolished the capacity of L6E9 myoblasts to form myotubes, without affecting myoblast proliferation, elongation, or alignment. Myogenic events like the induction of myogenin and of glucose carrier GLUT4 were also blocked and myoblasts could not exit the cell cycle, as measured by the lack of mRNA induction of p21 cyclin-dependent kinase inhibitor. Overexpresssion of MyoD in 10T1/2 cells was not sufficient to bypass the myogenic differentiation blockade by LY294002. Upon serum withdrawal, 10T1/2-MyoD cells formed myotubes and showed increased levels of myogenin and p21. In contrast, LY294002-treated cells exhibited none of these myogenic characteristics and maintained high levels of Id, a negative regulator of myogenesis. These data indicate that whereas phosphatidylinositol 3-kinase is not indispensable for cell proliferation or in the initial events of myoblast differentiation, i.e. elongation and alignment, it appears to be essential for terminal differentiation of muscle cells.


Brain Pathology | 2006

Phosphorylated Map Kinase (ERK1, ERK2) Expression is Associated with Early Tau Deposition in Neurones and Glial Cells, but not with Increased Nuclear DNA Vulnerability and Cell Death, in Alzheimer Disease, Pick's Disease, Progressive Supranuclear Palsy and Corticobasal Degeneration

Isidre Ferrer; R. Blanco; Margarita Carmona; R. Ribera; E. Goutan; B. Puig; M.J. Rey; A. Cardozo; Francesc Viñals; Teresa Ribalta

Abnormal tau phosphorylation and deposition in neurones and glial cells is one of the major features in tau pathies. The present study examines the involvement of the Ras/MEK/ERK pathway of tau phosphorylation in Alzheimer disease (AD), Picks disease (PiD), progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD), by Western blotting, single and double‐labelling immunohistochemistry, and p21Ras activation assay. Since this pathway is also activated in several paradigms of cell death and cell survival, activated ERK expression is also analysed with double‐labelling immunohistochemistry and in situ end‐labelling of nuclear DNA fragmentation to visualise activated ERK in cells with increased nuclear DNA vulnerability. The MEK1 antibody recognises one band of 45 kD that identifies phosphorylation‐independent MEK1, whose expression levels are not modified in diseased brains. The ERK antibody recognises one band of 42 kD corresponding to the molecular weight of phosphorylation‐independent ERK2; the expression levels, as well as the immunoreactivity of ERK in individual cells, is not changed in AD, PiD, PSP and CBD. The antibody MAPK‐P distinguishes two bands of 44 kD and 42 kD that detect phosphorylated ERK1 and ERK2. MAPK‐P expression levels, as seen with Western blotting, are markedly increased in AD, PiD, PSP and CBD. Moreover, immunohistochemistry discloses granular precipitates in the cytoplasm of neurones in AD, mainly in a subpopulation of neurones exhibiting early tau deposition, whereas neurones with developed neurofibrillary tangles are less commonly immunostained. MAPK‐P also decorates neurones with Pick bodies in PiD, early tau deposition in neurones in PSP and CBD, and cortical achromatic neurones in CBD. In addition, strong MAPK‐P immunoreactivity is found in large numbers of tau‐positive glial cells in PSP and CBD, as seen with double‐labelling immunohistochemistry. Yet no co‐localisation of enhanced phosphorylated ERK immunoreactivity and nuclear DNA fragmentation is found in AD, PiD, PSP and CBD. Finally, activated Ras expression levels are increased in AD cases when compared with controls. These results demonstrate increased phosphorylated (active) ERK expression in association with early tau deposition in neurones and glial cells in taupathies, and suggest activated Ras as the upstream activator of the MEK/ERK pathway of tau phosphorylation in AD.


Brain Research | 2002

MPP+ increases α-synuclein expression and ERK/MAP-kinase phosphorylation in human neuroblastoma SH-SY5Y cells

Cristina Gómez-Santos; Isidre Ferrer; Julia Reiriz; Francesc Viñals; Marta Barrachina; Santiago Ambrosio

Abstract α-Synuclein is a brain presynaptic protein that is linked to familiar early onset Parkinson’s disease and it is also a major component of Lewy bodies in sporadic Parkinson’s disease and other neurodegenerative disorders. α-Synuclein expression increases in substantia nigra of both MPTP-treated rodents and non-human primates, used as animal models of parkinsonism. Here we describe an increase in α-synuclein expression in a human neuroblastoma cell line, SH-SY5Y, caused by 5–100 μM MPP + , the active metabolite of MPTP, which induces apoptosis in SH-SY5Y cells after a 4-day treatment. We also analysed the activation of the MAPK family, which is involved in several cellular responses to toxins and stressing conditions. Parallel to the increase in α-synuclein expression we observed activation of MEK1,2 and ERK/MAPK but not of SAPK/JNK or p38 kinase. The inhibition of the ERK/MAPK pathway with U0126, however, did not affect the increase in α-synuclein. The highest increase in α-synuclein (more than threefold) in 4-day cultures was found in adherent cells treated with low concentrations of MPP + (5 μM). Inhibition of ERK/MAPK reduced the damage caused by MPP + . We suggest that α-synuclein increase and ERK/MAPK activation have a prominent role in the cell mechanisms of rescue and damage, respectively, after MPP + -treatment.


FEBS Letters | 2002

Inhibition of PI3K/p70 S6K and p38 MAPK cascades increases osteoblastic differentiation induced by BMP-2

Francesc Viñals; Teresa López-Rovira; Jose Luis Rosa; Francesc Ventura

Bone morphogenetic proteins (BMPs) transdifferentiate C2C12 cells from the myogenic to the osteogenic lineage. In this work we examine the role of the phosphatidylinositol 3‐kinase/p70 S6 kinase (PI3K/p70 S6K) and p38 mitogen‐activated protein kinase (p38 MAPK) cascades in the osteogenic effects of BMP‐2. BMP‐2 stimulated both cascades transiently (maximal at 1 h and decreasing thereafter). In contrast, BMP‐2 had no effect on p42/p44 MAPK (Erks) stimulation. We also analyzed the effects of selective inhibitors of these pathways on the expression of osteogenic markers. Inhibitors of p38 MAPK (SB203580) or the PI3K/p70 S6K pathway (Ly294002 and rapamycin) not only fail to block the osteoblast phenotype induced by BMP‐2, measured as induction of Cbfa1 expression and transcriptional activity, but also potentiate the effect of BMP‐2 on late osteoblast markers, such as alkaline phosphatase activity and osteocalcin expression. These data suggest that, in contrast to their positive effect on myogenic differentiation, PI3K/p70 S6K and p38 MAPK cascades have a negative role in osteoblast differentiation.


Brain Pathology | 2006

A1 Adenosine Receptors Accumulate in Neurodegenerative Structures in Alzheimer's Disease and Mediate Both Amyloid Precursor Protein Processing and Tau Phosphorylation and Translocation

Ester Angulo; Vicent Casadó; Josefa Mallol; Enric I. Canela; Francesc Viñals; Isidre Ferrer; Carmen Lluis; Rafael Franco

Immunostaining of adenosine receptors in the hippocampus and cerebral cortex from necropsies of Alzheimers disease (AD) patients shows that there is a change in the pattern of expression and a redistribution of receptors in these brain areas when compared with samples from controls. Adenosine A1 receptor (A1R) immunoreactivity was found in degenerating neurons with neurofibrillary tangles and in dystrophic neurites of senile plaques. A high degree of colocalization for A1R and pA4 amyloid in senile plaques and for A1R and tau in neurons with tau deposition, but without tangles, was seen. Additionally, adenosine A2A receptors, located mainly in striatal neurons in controls, appeared in glial cells in the hippocampus and cerebral cortex of patients. On comparing similar samples from controls and patients, no significant change was evident for metabotropic glutamate receptors. In the human neuroblastoma SH‐SY5Y cell line, agonists for A1R led to a dose‐dependent increase in the production of soluble forms of amyloid precursor protein in a process mediated by PKC. A1R agonist induced p21 Ras activation and ERK1/2 phosphorylation. Furthermore, activation of A1R led to and ERK‐dependent increase of tau phosphorylation and translocation towards the cytoskeleton. These results indicate that adenosine receptors are potential targets for AD.


Cancer Research | 2012

RANK Induces Epithelial–Mesenchymal Transition and Stemness in Human Mammary Epithelial Cells and Promotes Tumorigenesis and Metastasis

Marta Palafox; Irene Ferrer; Pasquale Pellegrini; Sergi Vila; Sara Hernandez-Ortega; Ander Urruticoechea; Fina Climent; María Teresa Soler; Purificación Muñoz; Francesc Viñals; Mark E. Tometsko; Dan Branstetter; William C. Dougall; Eva González-Suárez

Paracrine signaling through receptor activator of NF-κB (RANK) pathway mediates the expansion of mammary epithelia that occurs during pregnancy, and activation of RANK pathway promotes mammary tumorigenesis in mice. In this study we extend these previous data to human cells and show that the RANK pathway promotes the development of mammary stem cells and breast cancer. Overexpression of RANK (FL-RANK) in a panel of tumoral and normal human mammary cells induces the expression of breast cancer stem and basal/stem cell markers. High levels of RANK in untransformed MCF10A cells induce changes associated with both stemness and transformation, including mammary gland reconstitution, epithelial-mesenchymal transition (EMT), increased migration, and anchorage-independent growth. In addition, spheroids of RANK overexpressing MCF10A cells display disrupted acinar formation, impair growth arrest and polarization, and luminal filling. RANK overexpression in tumor cells with nonfunctional BRCA1 enhances invasiveness in acinar cultures and increases tumorigenesis and metastasis in immunodeficient mice. High levels of RANK were found in human primary breast adenocarcinomas that lack expression of the hormone receptors, estrogen and progesterone, and in tumors with high pathologic grade and proliferation index; high RANK/RANKL expression was significantly associated with metastatic tumors. Together, our findings show that RANK promotes tumor initiation, progression, and metastasis in human mammary epithelial cells by increasing the population of CD44(+)CD24(-) cells, inducing stemness and EMT. These results suggest that RANK expression in primary breast cancer associates with poor prognosis.


The EMBO Journal | 2004

BMP-2 decreases Mash1 stability by increasing Id1 expression

Francesc Viñals; Julia Reiriz; Santiago Ambrosio; Ramon Bartrons; Jose Luis Rosa; Francesc Ventura

In neural development, bone morphogenetic proteins (BMPs) restrict neuronal differentiation, thereby promoting the maintenance of progenitor cells or even inducing astrocytogenesis. We report that exposure of neuroendocrine lung carcinoma cells to BMP‐2 leads to a rapid decline in steady‐state levels of Mash1 protein and some neuron‐specific markers. BMP‐2 induces a post‐transcriptional decrease in Mash1 levels through enhanced degradation. We demonstrate that Mash1 protein stability is tightly regulated by the E47/Id1 expression ratio. Transient induction of Id1 by BMP‐2 negatively correlates with Mash1 levels. Furthermore, an ectopic increase in Id1 levels is sufficient to induce degradation of either ectopic or endogenous Mash1, whereas expression of Mash1 in Id1‐deficient cells or overexpression of E47 makes Mash1 levels refractory to the addition of BMP‐2. Furthermore, we show that the E47/Id1 expression ratio also regulates CK2‐mediated phosphorylation of Mash1 on Ser152, which increases interaction of Mash1–E47 heterodimers. We propose a novel mechanism in which the balance between Id and E protein levels regulates not only the transcriptional function but also protein stability of the neurogenic bHLH transcription factor Mash1.


Journal of Biological Chemistry | 1997

Myogenesis and MyoD Down-regulate Sp1 A MECHANISM FOR THE REPRESSION OF GLUT1 DURING MUSCLE CELL DIFFERENTIATION

Francesc Viñals; César Fandos; Tomàs Santalucía; Josep Ferré; Xavier Testar; Manuel Palacín; Antonio Zorzano

Muscle cell differentiation caused a reduction of glucose transport, GLUT1 glucose transporter expression, and GLUT1 mRNA levels. A fragment of 2.1 kilobases of the rat GLUT1 gene linked to chloramphenicol acetyltransferase drove transcriptional activity in myoblasts, and differentiation caused a decrease in transcription. Transient transfection of 5′ and 3′ deletion constructs showed that the fragment −99/−33 of the GLUT1 gene drives transcriptional activity of the GLUT1 gene and participates in the reduced transcription after muscle differentiation. Electrophoretic mobility shift assays showed the binding of Sp1 protein to the fragment −102/−37 in the myoblast state but not in myotubes, and Sp1 was found to transactivate the GLUT1 promoter. Western blot analysis indicated that Sp1 was drastically down-regulated during myogenesis. Furthermore, the forced over-expression of MyoD in C3H10T1/2 cells mimicked the effects observed during myogenesis, Sp1 down-regulation and reduced transcriptional activity of the GLUT1 gene promoter. In all, these data suggest a regulatory model in which MyoD activation during myogenesis causes the down-regulation of Sp1, which contributes to the repression of GLUT1 gene transcription and, therefore, leads to the reduction in GLUT1 expression and glucose transport.


Journal of Biological Chemistry | 1999

Factors involved in GLUT-1 glucose transporter gene transcription in cardiac muscle.

Tomas Santalucia; Kenneth R. Boheler; Nigel J. Brand; Una Sahye; César Fandos; Francesc Viñals; Josep Ferré; Xavier Testar; Manuel Palacı́n; Antonio Zorzano

Glucose constitutes a major fuel for the heart, and high glucose uptake during fetal development is coincident with the highest level of expression of the glucose transporter GLUT-1 during life. We have previously reported that GLUT-1 is repressed perinatally in rat heart, and GLUT-4, which shows a low level of expression in the fetal stage, becomes the main glucose transporter in the adult. Here, we show that the perinatal expression of GLUT-1 and GLUT-4 glucose transporters in heart is controlled directly at the level of gene transcription. Transient transfection assays show that the −99/−33 fragment of the GLUT-1 gene is sufficient to drive transcriptional activity in rat neonatal cardiomyocytes. Electrophoretic mobility shift assays demonstrate that the transcription factor Sp1, a trans-activator ofGLUT-1 promoter, binds to the −102/−82 region ofGLUT-1 promoter during the fetal state but not during adulthood. Mutation of the Sp1 site in this region demonstrates that Sp1 is essential for maintaining a high transcriptional activity in cardiac myocytes. Sp1 is markedly down-regulated both in heart and in skeletal muscle during neonatal life, suggesting an active role for Sp1 in the regulation of GLUT-1 transcription. In all, these results indicate that the expression of GLUT-1 and GLUT-4 in heart during perinatal development is largely controlled at a transcriptional level by mechanisms that might be related to hyperplasia and that are independent from the signals that trigger cell hypertrophy in the developing heart. Furthermore, our results provide the first functional insight into the mechanisms regulating muscle GLUT-1 gene expression in a live animal.

Collaboration


Dive into the Francesc Viñals's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

August Vidal

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mariona Graupera

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Anna Gumà

University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge