Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesca Aguilo is active.

Publication


Featured researches published by Francesca Aguilo.


Cancer Research | 2011

Long Noncoding RNA, Polycomb, and the Ghosts Haunting INK4b-ARF-INK4a Expression

Francesca Aguilo; Ming-Ming Zhou; Martin J. Walsh

Polycomb group proteins (PcG) function as transcriptional repressors of gene expression. The important role of PcG in mediating repression of the INK4b-ARF-INK4a locus, by directly binding to the long noncoding RNA (lncRNA) transcript antisense noncoding RNA in the INK4 locus (ANRIL), was recently shown. INK4b-ARF-INK4a encodes 3 tumor-suppressor proteins, p15(INK4b), p14(ARF), and p16(INK4a), and its transcription is a key requirement for replicative or oncogene-induced senescence and constitutes an important barrier for tumor growth. ANRIL gene is transcribed in the antisense orientation of the INK4b-ARF-INK4a gene cluster, and different single-nucleotide polymorphisms are associated with increased susceptibility to several diseases. Although lncRNA-mediated regulation of INK4b-ARF-INK4a gene is not restricted to ANRIL, both polycomb repressive complex-1 (PRC1) and -2 (PRC2) interact with ANRIL to form heterochromatin surrounding the INK4b-ARF-INK4a locus, leading to its repression. This mechanism would provide an increased advantage for bypassing senescence, sustaining the requirements for the proliferation of stem and/or progenitor cell populations or inappropriately leading to oncogenesis through the aberrant saturation of the INK4b-ARF-INK4a locus by PcG complexes. In this review, we summarize recent findings on the underlying epigenetic mechanisms that link PcG function with ANRIL, which impose gene silencing to control cellular homeostasis as well as cancer development.


Blood | 2011

Prdm16 is a physiologic regulator of hematopoietic stem cells

Francesca Aguilo; Serine Avagyan; Amy S. Labar; Ana Sevilla; Dung Fang Lee; Parameet Kumar; Ihor R. Lemischka; Betty Y. Zhou; Hans-Willem Snoeck

Fetal liver and adult bone marrow hematopoietic stem cells (HSCs) renew or differentiate into committed progenitors to generate all blood cells. PRDM16 is involved in human leukemic translocations and is expressed highly in some karyotypically normal acute myeloblastic leukemias. As many genes involved in leukemogenic fusions play a role in normal hematopoiesis, we analyzed the role of Prdm16 in the biology of HSCs using Prdm16-deficient mice. We show here that, within the hematopoietic system, Prdm16 is expressed very selectively in the earliest stem and progenitor compartments, and, consistent with this expression pattern, is critical for the establishment and maintenance of the HSC pool during development and after transplantation. Prdm16 deletion enhances apoptosis and cycling of HSCs. Expression analysis revealed that Prdm16 regulates a remarkable number of genes that, based on knockout models, both enhance and suppress HSC function, and affect quiescence, cell cycling, renewal, differentiation, and apoptosis to various extents. These data suggest that Prdm16 may be a critical node in a network that contains negative and positive feedback loops and integrates HSC renewal, quiescence, apoptosis, and differentiation.


Cell Stem Cell | 2015

Coordination of m(6)A mRNA Methylation and Gene Transcription by ZFP217 Regulates Pluripotency and Reprogramming.

Francesca Aguilo; Fan Zhang; Ana Sancho; Miguel Fidalgo; Serena Di Cecilia; Ajay A. Vashisht; Dung Fang Lee; Chih-hung Chen; Madhumitha Rengasamy; Blanca Andino; Farid Jahouh; Ángel C. Román; Sheryl R. Krig; Rong Wang; Weijia Zhang; James A. Wohlschlegel; Jianlong Wang; Martin J. Walsh

Epigenetic and epitranscriptomic networks have important functions in maintaining the pluripotency of embryonic stem cells (ESCs) and somatic cell reprogramming. However, the mechanisms integrating the actions of these distinct networks are only partially understood. Here we show that the chromatin-associated zinc finger protein 217 (ZFP217) coordinates epigenetic and epitranscriptomic regulation. ZFP217 interacts with several epigenetic regulators, activates the transcription of key pluripotency genes, and modulates N6-methyladenosine (m(6)A) deposition on their transcripts by sequestering the enzyme m(6)A methyltransferase-like 3 (METTL3). Consistently, Zfp217 depletion compromises ESC self-renewal and somatic cell reprogramming, globally increases m(6)A RNA levels, and enhances m(6)A modification of the Nanog, Sox2, Klf4, and c-Myc mRNAs, promoting their degradation. ZFP217 binds its own target gene mRNAs, which are also METTL3 associated, and is enriched at promoters of m(6)A-modified transcripts. Collectively, these findings shed light on how a transcription factor can tightly couple gene transcription to m(6)A RNA modification to ensure ESC identity.


The EMBO Journal | 2013

Interplay between Homeobox proteins and Polycomb repressive complexes in p16INK4a regulation

Nadine Martin; Nikolay Popov; Francesca Aguilo; Ana O'Loghlen; Selina Raguz; Ambrosius P. Snijders; Gopuraja Dharmalingam; SiDe Li; Efstathia Thymiakou; Thomas Carroll; Bernd B. Zeisig; Chi Wai Eric So; Gordon Peters; Vasso Episkopou; Martin J. Walsh; Jesús Gil

The INK4/ARF locus regulates senescence and is frequently altered in cancer. In normal cells, the INK4/ARF locus is found silenced by Polycomb repressive complexes (PRCs). Which are the mechanisms responsible for the recruitment of PRCs to INK4/ARF and their other target genes remains unclear. In a genetic screen for transcription factors regulating senescence, we identified the homeodomain‐containing protein HLX1 (H2.0‐like homeobox 1). Expression of HLX1 extends cellular lifespan and blunts oncogene‐induced senescence. Using quantitative proteomics, we identified p16INK4a as the key target mediating the effects of HLX1 in senescence. HLX1 represses p16INK4a transcription by recruiting PRCs and HDAC1. This mechanism has broader implications, as HLX1 also regulates a subset of PRC targets besides p16INK4a. Finally, sampling members of the Homeobox family, we identified multiple genes with ability to repress p16INK4a. Among them, we found HOXA9 (Homeobox A9), a putative oncogene in leukaemia, which also recruits PRCs and HDAC1 to regulate p16INK4a. Our results reveal an unexpected and conserved interplay between homeodomain‐containing proteins and PRCs with implications in senescence, development and cancer.


ACS Medicinal Chemistry Letters | 2016

Structure-Guided Discovery of Selective Antagonists for the Chromodomain of Polycomb Repressive Protein CBX7

Chunyan Ren; Steven G. Smith; Kyoko L. Yap; SiDe Li; Jiaojie Li; Mihaly Mezei; Yoel Rodríguez; Adam Vincek; Francesca Aguilo; Martin J. Walsh; Ming-Ming Zhou

The chromobox 7 (CBX7) protein of the polycomb repressive complex 1 (PRC1) functions to repress transcription of tumor suppressor p16 (INK4a) through long noncoding RNA, ANRIL (antisense noncoding RNA in the INK4 locus) directed chromodomain (ChD) binding to trimethylated lysine 27 of histone H3 (H3K27me3), resulting in chromatin compaction at the INK4a/ARF locus. In this study, we report structure-guided discovery of two distinct classes of small-molecule antagonists for the CBX7ChD. Our Class A compounds, a series including analogues of the previously reported MS452, inhibit CBX7ChD/methyl-lysine binding by occupying the H3K27me3 peptide binding site, whereas our Class B compound, the newly discovered MS351, appears to inhibit H3K27me3 binding when CBX7ChD is bound to RNA. Our crystal structure of the CBX7ChD/MS351 complex reveals the molecular details of ligand recognition by the aromatic cage residues that typically engage in methyl-lysine binding. We further demonstrate that MS351 effectively induces transcriptional derepression of CBX7 target genes, including p16 (INK4a) in mouse embryonic stem cells and human prostate cancer PC3 cells. Thus, MS351 represents a new class of ChD antagonists that selectively targets the biologically active form of CBX7 of the PRC1 in long noncoding RNA- and H3K27me3-directed gene transcriptional repression.


Cell Reports | 2016

Deposition of 5-Methylcytosine on Enhancer RNAs Enables the Coactivator Function of PGC-1α

Francesca Aguilo; SiDe Li; Natarajan Balasubramaniyan; Ana Sancho; Sabina Benko; Fan Zhang; Ajay A. Vashisht; Madhumitha Rengasamy; Blanca Andino; Chih-hung Chen; Felix Zhou; Chengmin Qian; Ming-Ming Zhou; James A. Wohlschlegel; Weijia Zhang; Frederick J. Suchy; Martin J. Walsh

The Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) is a transcriptional co-activator that plays a central role in adapted metabolic responses. PGC-1α is dynamically methylated and unmethylated at the residue K779 by the methyltransferase SET7/9 and the Lysine Specific Demethylase 1A (LSD1), respectively. Interactions of methylated PGC-1α[K779me] with the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex, the Mediator members MED1 and MED17, and the NOP2/Sun RNA methytransferase 7 (NSUN7) reinforce transcription, and are concomitant with the m(5)C mark on enhancer RNAs (eRNAs). Consistently, loss of Set7/9 and NSun7 in liver cell model systems resulted in depletion of the PGC-1α target genes Pfkl, Sirt5, Idh3b, and Hmox2, which was accompanied by a decrease in the eRNAs levels associated with these loci. Enrichment of m(5)C within eRNA species coincides with metabolic stress of fasting in vivo. Collectively, these findings illustrate the complex epigenetic circuitry imposed by PGC-1α at the eRNA level to fine-tune energy metabolism.


Biochemical Journal | 2010

Transcriptional regulation of the human acetoacetyl-CoA synthetase gene by PPARgamma.

Francesca Aguilo; Nuria Camarero; Joana Relat; Pedro F. Marrero; Diego Haro

In the cytosol of lipogenic tissue, ketone bodies are activated by AACS (acetoacetyl-CoA synthetase) and incorporated into cholesterol and fatty acids. AACS gene expression is particularly abundant in white adipose tissue, as it is induced during adipocyte differentiation. In order to elucidate the mechanism controlling the gene expression of human AACS and to clarify its physiological role, we isolated the human promoter, characterized the elements required to initiate transcription and analysed the expression of the gene in response to PPARgamma (peroxisome-proliferator-activated receptor gamma), an inducer of adipogenesis. We show that the human AACS promoter is a PPARgamma target gene and that this nuclear receptor is recruited to the AACS promoter by direct interaction with Sp1 (stimulating protein-1).


Cancer Research | 2016

RBM5-AS1 Is Critical for Self-Renewal of Colon Cancer Stem-like Cells

Serena Di Cecilia; Fan Zhang; Ana Sancho; SiDe Li; Francesca Aguilo; Yifei Sun; Madhumitha Rengasamy; Weijia Zhang; Luigi Del Vecchio; F. Salvatore; Martin J. Walsh

Cancer-initiating cells (CIC) undergo asymmetric growth patterns that increase phenotypic diversity and drive selection for chemotherapeutic resistance and tumor relapse. WNT signaling is a hallmark of colon CIC, often caused by APC mutations, which enable activation of β-catenin and MYC Accumulating evidence indicates that long noncoding RNAs (lncRNA) contribute to the stem-like character of colon cancer cells. In this study, we report enrichment of the lncRNA RBM5-AS1/LUST during sphere formation of colon CIC. Its silencing impaired WNT signaling, whereas its overexpression enforced WNT signaling, cell growth, and survival in serum-free media. RBM5-AS1 has been little characterized previously, and we determined it to be a nuclear-retained transcript that selectively interacted with β-catenin. Mechanistic investigations showed that silencing or overexpression of RBM5-AS1 caused a respective loss or retention of β-catenin from TCF4 complexes bound to the WNT target genes SGK1, YAP1, and MYC Our work suggests that RBM5-AS1 activity is critical for the functional enablement of colon cancer stem-like cells. Furthermore, it defines the mechanism of action of RBM5-AS1 in the WNT pathway via physical interactions with β-catenin, helping organize transcriptional complexes that sustain colon CIC function. Cancer Res; 76(19); 5615-27. ©2016 AACR.


Blood | 2011

Quantitative trait mapping reveals a regulatory axis involving peroxisome proliferator-activated receptors, PRDM16, transforming growth factor-β2 and FLT3 in hematopoiesis.

Serine Avagyan; Francesca Aguilo; Kenjiro Kamezaki; Hans-Willem Snoeck

Hematopoiesis is the process whereby BM HSCs renew to maintain their number or to differentiate into committed progenitors to generate all blood cells. One approach to gain mechanistic insight into this complex process is the investigation of quantitative genetic variation in hematopoietic function among inbred mouse strains. We previously showed that TGF-β2 is a genetically determined positive regulator of hematopoiesis. In the presence of unknown nonprotein serum factors TGF-β2, but not TGF-β1 or -β3, enhances progenitor proliferation in vitro, an effect that is subject to mouse strain-dependent variation mapping to a locus on chr.4, Tb2r1. TGF-β2-deficient mice show hematopoietic defects, demonstrating the physiologic role of this cytokine. Here, we show that TGF-β2 specifically and predominantly cell autonomously enhances signaling by FLT3 in vitro and in vivo. A coding polymorphism in Prdm16 (PR-domain-containing 16) underlies Tb2r1 and differentially regulates transcriptional activity of peroxisome proliferator-activated receptor-γ (PPARγ), identifying lipid PPAR ligands as the serum factors required for regulation of FLT3 signaling by TGF-β2. We furthermore show that PPARγ agonists play a FLT3-dependent role in stress responses of progenitor cells. These observations identify a novel regulatory axis that includes PPARs, Prdm16, and TGF-β2 in hematopoiesis.


Human Molecular Genetics | 2015

CHD6 regulates the topological arrangement of the CFTR locus

Ana Sancho; SiDe Li; Thankam Paul; Fan Zhang; Francesca Aguilo; Ajay A. Vashisht; Natarajan Balasubramaniyan; Neal Leleiko; Frederick J. Suchy; James A. Wohlschlegel; Weijia Zhang; Martin J. Walsh

The control of transcription is regulated through the well-coordinated spatial and temporal interactions between distal genomic regulatory elements required for specialized cell-type and developmental gene expression programs. With recent findings CFTR has served as a model to understand the principles that govern genome-wide and topological organization of distal intra-chromosomal contacts as it relates to transcriptional control. This is due to the extensive characterization of the DNase hypersensitivity sites, modification of chromatin, transcription factor binding sites and the arrangement of these sites in CFTR consistent with the restrictive expression in epithelial cell types. Here, we identified CHD6 from a screen among several chromatin-remodeling proteins as a putative epigenetic modulator of CFTR expression. Moreover, our findings of CTCF interactions with CHD6 are consistent with the role described previously for CTCF in CFTR regulation. Our results now reveal that the CHD6 protein lies within the infrastructure of multiple transcriptional complexes, such as the FACT, PBAF, PAF1C, Mediator, SMC/Cohesion and MLL complexes. This model underlies the fundamental role CHD6 facilitates by tethering cis-acting regulatory elements of CFTR in proximity to these multi-subunit transcriptional protein complexes. Finally, we indicate that CHD6 structurally coordinates a three-dimensional stricture between intragenic elements of CFTR bound by several cell-type specific transcription factors, such as CDX2, SOX18, HNF4α and HNF1α. Therefore, our results reveal new insights into the epigenetic regulation of CFTR expression, whereas the manipulation of CFTR gene topology could be considered for treating specific indications of cystic fibrosis and/or pancreatitis.

Collaboration


Dive into the Francesca Aguilo's collaboration.

Top Co-Authors

Avatar

Martin J. Walsh

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

SiDe Li

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Fan Zhang

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Weijia Zhang

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Sancho

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Dung Fang Lee

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Madhumitha Rengasamy

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Ming-Ming Zhou

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge