Francesca Berini
University of Insubria
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francesca Berini.
Microbial Cell Factories | 2017
Francesca Berini; Ilaria Presti; Fabrizio Beltrametti; Marco Pedroli; Kjell M. Vårum; Loredano Pollegioni; Sara Sjöling; Flavia Marinelli
BackgroundThrough functional screening of a fosmid library, generated from a phytopathogen-suppressive soil metagenome, the novel antifungal chitinase—named Chi18H8 and belonging to family 18 glycosyl hydrolases—was previously discovered. The initial extremely low yield of Chi18H8 recombinant production and purification from Escherichia coli cells (21xa0μg/g cell) limited its characterization, thus preventing further investigation on its biotechnological potential.ResultsWe report on how we succeeded in producing hundreds of milligrams of pure and biologically active Chi18H8 by developing and scaling up to a high-yielding,xa030xa0L bioreactor process, based on a novel method of mild solubilization of E. coli inclusion bodies in lactic acid aqueous solution, coupled with a single step purification by hydrophobic interaction chromatography. Chi18H8 was characterized as a Ca2+-dependent mesophilic chitobiosidase, active on chitin substrates at acidic pHs and possessing interesting features, such as solvent tolerance, long-term stability in acidic environment and antifungal activity against the phytopathogens Fusarium graminearum and Rhizoctonia solani. Additionally, Chi18H8 was found to operate according to a non-processive endomode of action on a water-soluble chitin-like substrate.ConclusionsExpression screening of a metagenomic library may allow access to the functional diversity of uncultivable microbiota and to the discovery of novel enzymes useful for biotechnological applications. A persisting bottleneck, however, is the lack of methods for large scale production of metagenome-sourced enzymes from genes of unknown origin in the commonly used microbial hosts. To our knowledge, this is the first report on a novel metagenome-sourced enzyme produced in hundreds-of-milligram amount by recovering the protein in the biologically active form from recombinant E. coli inclusion bodies.
BMC Biotechnology | 2013
Elisa Binda; Giorgia Letizia Marcone; Francesca Berini; Loredano Pollegioni; Flavia Marinelli
BackgroundVanYn, encoded by the dbv7 gene (also known as vanYn) of the biosynthetic cluster devoted to A40926 production, is a novel protein involved in the mechanism of self-resistance in Nonomuraea sp. ATCC 39727. This filamentous actinomycete is an uncommon microorganism, difficult-to-handle but biotechnologically valuable since it produces the glycopeptide antibiotic A40926, which is the precursor of the second-generation dalbavancin in phase III of clinical development. In order to investigate VanYn role in glycopeptide resistance in the producer actinomycete an appropriate host-vector expression system is required.ResultsThe cloning strategy of vanYn gene (G-C ratio 73.3%) in the expression vector pIJ86 yielded a recombinant protein with a tag encoding for a histidine hexamer added at the C-terminus (C-His6-vanYn) or at the N-terminus (N-His6-vanYn). These plasmids were used to transform three Streptomyces spp., which are genetically-treatable high G-C content Gram-positive bacteria taxonomically related to the homologous producer Nonomuraea sp.. Highest yield of protein expression and purification (12xa0mg of protein per liter of culture at 3xa0L bioreactor-scale) was achieved in Streptomyces venezuelae ATCC 10595, that is a fast growing streptomyces susceptible to glycopeptides. VanYn is a transmembrane protein which was easily detached and recovered from the cell wall fraction. Purified C-His6-VanYn showed d,d-carboxypeptidase and d,d-dipeptidase activities on synthetic analogs of bacterial peptidoglycan (PG) precursors. C-His6-VanYn over-expression conferred glycopeptide resistance to S. venezuelae. On the contrary, the addition of His6-tag at the N-terminus of the protein abolished its biological activity either in vitro or in vivo assays.ConclusionsHeterologous expression of vanYn from Nonomuraea sp. ATCC 39727 in S. venezuelae was successfully achieved and conferred the host an increased level of glycopeptide resistance. Cellular localization of recombinant VanYn together with its enzymatic activity as a d,d-peptidase/d,d-carboxypeptidase agree with its role in removing the last d-Ala from the pentapeptide PG precursors and reprogramming cell wall biosynthesis, as previously reported in glycopeptide resistant pathogens.
Applied Microbiology and Biotechnology | 2015
Mariana Silvia Cretoiu; Francesca Berini; Anna M. Kielak; Flavia Marinelli; Jan Dirk van Elsas
Here, we report on the construction of a metagenomic library from a chitin-amended disease-suppressive agricultural soil and its screening for genes that encode novel chitinolytic enzymes. The library, constructed in fosmids in an Escherichia coli host, comprised 145,000 clones containing inserts of sizes of 21 to 40xa0kb, yielding a total of approximately 5.8xa0GB of cloned soil DNA. Using genetic screenings by repeated PCR cycles aimed to detect gene sequences of the bacterial chitinase A-class (hereby named chi A genes), we identified and characterized five fosmids carrying candidate genes for chitinolytic enzymes. The analysis thus allowed access to the genomic (fosmid-borne) context of these genes. Using the chiA-targeted PCR, which is based on degenerate primers, the five fosmids all produced amplicons, of which the sequences were related to predicted chitinolytic enzyme-encoding genes of four different host organisms, including Stenotrophomonas maltophilia. Sequencing and de novo annotation of the fosmid inserts confirmed that each one of these carried one or more open reading frames that were predicted to encode enzymes active on chitin, including one for a chitin deacetylase. Moreover, the genetic contexts in which the putative chitinolytic enzyme-encoding genes were located were unique per fosmid. Specifically, inserts from organisms related to Burkholderia sp., Acidobacterium sp., Aeromonas veronii, and the chloroflexi Nitrolancetus hollandicus and/or Ktedonobacter racemifer were obtained. Remarkably, the S. maltophilia chiA-like gene was found to occur in two different genetic contexts (related to N. hollandicus/K. racemifer), indicating the historical occurrence of genetic reshufflings in this part of the soil microbiota. One fosmid containing the insert composed of DNA from the N. hollandicus-like organism (denoted 53D1) was selected for further work. Using subcloning procedures, its putative gene for a chitinolytic enzyme was successfully brought to expression in an E. coli host. On the basis of purified protein preparations, the produced protein was characterized as a chitobiosidase of 43.6xa0kDa, with a pI of 4.83. Given its activity spectrum, it can be typified as a halotolerant chitobiosidase.
Applied Microbiology and Biotechnology | 2017
Luka Ausec; Francesca Berini; Carmine Casciello; Mariana Silvia Cretoiu; Jan Dirk van Elsas; Flavia Marinelli; Ines Mandic-Mulec
Metagenomics is a powerful tool that allows identifying enzymes with novel properties from the unculturable component of microbiomes. However, thus far only a limited number of laccase or laccase -like enzymes identified through metagenomics has been subsequently biochemically characterized. This work describes the successful bio-mining of bacterial laccase-like enzymes in an acidic bog soil metagenome and the characterization of the first acidobacterial laccase-like multicopper oxidase (LMCO). LMCOs have hitherto been mostly studied in fungi and some have already found applications in diverse industries. However, improved LMCOs are in high demand. Using molecular screening of a small metagenomic library (13,500 clones), a gene encoding a three-domain LMCO (LacM) was detected, showing the highest similarity to putative copper oxidases of Candidatus Solibacter (Acidobacteria). The encoded protein was expressed in Escherichia coli, purified by affinity chromatography and biochemically characterized. LacM oxidized a variety of phenolic substrates, including two standard laccase substrates (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), kcat/kMxa0=xa08.45xa0s−1xa0mM−1; 2,6-dimethoxyphenol (2,6-DMP), kcat/kMxa0=xa06.42xa0s−1xa0mM−1), next to L-3,4-dihydroxyphenylalanine (L-DOPA), vanillic acid, syringaldazine, pyrogallol, and pyrocatechol. With respect to the latter two lignin building blocks, LacM showed the highest catalytic activity (kcat/kMxa0=xa0173.6xa0s−1xa0mM−1) for pyrogallol, with ca. 20% activity preserved even at pH 8.0. The enzyme was thermostable and heat-activated in the interval 40–60xa0°C, with an optimal activity on ABTS at 50xa0°C. It was rather stable at high salt concentration (e.g., 34% activity preserved at 500xa0mMxa0NaCl) and in the presence of organic solvents. Remarkably, LacM decolored azo and triphenylmethane dyes, also in the absence of redox mediators.
Pest Management Science | 2016
Francesca Berini; Silvia Caccia; Eleonora Franzetti; Terenzio Congiu; Flavia Marinelli; Morena Casartelli; Gianluca Tettamanti
BACKGROUNDnThe peritrophic matrix (PM) is formed by a network of chitin fibrils associated with proteins, glycoproteins and proteoglycans that lines the insect midgut. It is a physical barrier involved in digestion processes, and protects the midgut epithelium from food abrasion, pathogen infections and toxic materials. Given its fundamental role in insect physiology, the PM represents an excellent target for pest control strategies. Although a number of viral, bacterial and insect chitinolytic enzymes affecting PM integrity have already been tested, exploitation of fungal chitinases has been almost neglected. Fungal chitinases, already in use as fungal phytopathogen biocontrol agents, are known to attack the insect cuticle, but their action on the insect gut needs to be better investigated.nnnRESULTSnIn the present paper, we performed a biochemical characterisation of a commercial mixture of chitinolytic enzymes derived from Trichoderma viride and analysed its in vitro and in vivo effects on the PM of the silkworm Bombyx mori, a model system among Lepidoptera. We found that these enzymes have significant in vitro effects on the structure and permeability of the PM of this insect. A bioassay supported these results and showed that the oral administration of the mixture causes PM alterations, leading to adverse consequences on larval growth and development, negatively affecting pupal weight and even inducing mortality.nnnCONCLUSIONSnThis study provides an integrated experimental approach to evaluate the effects of fungal chitinases on Lepidoptera. The encouraging results obtained herein make us confident about the possible use of fungal chitinases to control lepidopteran pests.
Fems Microbiology Letters | 2017
Francesca Berini; Carmine Casciello; Giorgia Letizia Marcone; Flavia Marinelli
Abstract In the transition to the post‐petroleum economy, there is a growing demand for novel enzymes with high process performances to replace traditional chemistry with a more ‘green’ approach. To date, microorganisms encompass the richest source of industrial biocatalysts, but the Earth‐living microbiota remains largely untapped by using traditional isolation and cultivation methods. Metagenomics, which is culture independent, represents a powerful tool for discovering novel enzymes from unculturable microorganisms. Herein, we summarize the variety of approaches adopted for mining environmental DNA and, based on a systematic literature review, we provide a comprehensive list of 332 industrially relevant enzymes discovered from metagenomes within the last three years.
Applied Microbiology and Biotechnology | 2018
Francesca Berini; Marko Verce; Luka Ausec; Elena Rosini; Fabio Tonin; Loredano Pollegioni; Ines Mandic-Mulec
Bioinformatics has revealed the presence of putative laccase genes in diverse bacteria, including extremophiles, autotrophs, and, interestingly, anaerobes. Integrity of laccase genes in anaerobes has been questioned, since laccases oxidize a variety of compounds using molecular oxygen as the electron acceptor. The genome of the anaerobe Geobacter metallireducens GS-15 contains five genes for laccase-like multicopper oxidases. In order to show whether one of the predicted genes encodes a functional laccase, the protein encoded by GMET_RS10855 was heterologously expressed in Escherichia coli cells. The His6-tagged enzyme (named GeoLacc) was purified to a large extent in the apoprotein, inactive form: incubation with CuSO4 allowed a 43-fold increase of the specific activity yielding a metallo-enzyme. The purified enzyme oxidized some of the typical laccase substrates, including 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), syringaldazine, and 2,6-dimethoxyphenol (2,6-DMP), along with pyrogallol and K4[Fe(CN)6]. Temperature optimum was 75xa0°C and pH optimum for ABTS and 2,6-DMP oxidation was ~u20096.0. As observed for other laccases, the enzyme was inhibited by halide anions and was sensitive to increasing concentrations of dimethyl sulfoxide and Tween-80. Notably, GeoLacc possesses a very high affinity for dioxygen: a similar activity was measured performing the reaction at air-saturated or microaerophilic conditions.
Biotechnology Advances | 2018
Giorgia Letizia Marcone; Elisa Binda; Francesca Berini; Flavia Marinelli
Glycopeptide antibiotics are drugs of last resort for treating severe infections caused by multi-drug resistant Gram-positive pathogens. First-generation glycopeptides (vancomycin and teicoplanin) are produced by soil-dwelling actinomycetes. Second-generation glycopeptides (dalbavancin, oritavancin, and telavancin) are semi-synthetic derivatives of the progenitor natural products. Herein, we cover past and present biotechnological approaches for searching for and producing old and new glycopeptide antibiotics. We review the strategies adopted to increase microbial production (from classical strain improvement to rational genetic engineering), and the recent progress in genome mining, chemoenzymatic derivatization, and combinatorial biosynthesis for expanding glycopeptide chemical diversity and tackling the never-ceasing evolution of antibiotic resistance.
Biotechnology Advances | 2018
Francesca Berini; Chen Katz; Nady Gruzdev; Morena Casartelli; Gianluca Tettamanti; Flavia Marinelli
The negative impact of the massive use of synthetic pesticides on the environment and on human health has stimulated the search for environment-friendly practices for controlling plant diseases and pests. Among them, biocontrol, which relies on using beneficial organisms or their products (bioactive molecules and/or hydrolytic enzymes), holds the greatest promise and is considered a pillar of integrated pest management. Chitinases are particularly attractive to this purpose since they have fungicidal, insecticidal, and nematicidal activities. Here, current knowledge on the biopesticidal action of microbial and viral chitinases is reviewed, together with a critical analysis of their future development as biopesticides.
Biotechnology Reports | 2017
Carmine Casciello; Fabio Tonin; Francesca Berini; Elisa Fasoli; Flavia Marinelli; Loredano Pollegioni; Elena Rosini
Graphical abstract Treatment of 50 μM RBBR with 60 μg of N. gerenzanensis peroxidase preparation: the dye decolorizing activity was clearly observed.