Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giorgia Letizia Marcone is active.

Publication


Featured researches published by Giorgia Letizia Marcone.


Protein Science | 2005

Evolution of an acylase active on cephalosporin C

Loredano Pollegioni; Simona Lorenzi; Elena Rosini; Giorgia Letizia Marcone; Gianluca Molla; Roberto Verga; Walter Cabri; Mirella S. Pilone

Semisynthetic cephalosporins are synthesized from 7‐amino cephalosporanic acid, which is produced by chemical deacylation or by a two‐step enzymatic process of the natural antibiotic cephalosporin C. The known acylases take glutaryl‐7‐amino cephalosporanic acid as a primary substrate, and their specificity and activity are too low for cephalosporin C. Starting from a known glutaryl‐7‐amino cephalosporanic acid acylase as the protein scaffold, an acylase gene optimized for expression in Escherichia coli and for molecular biology manipulations was designed. Subsequently we used error‐prone PCR mutagenesis, a molecular modeling approach combined with site‐saturation mutagenesis, and site‐directed mutagenesis to produce enzymes with a cephalosporin C/glutaryl‐7‐amino cephalosporanic acid catalytic efficiency that was increased up to 100‐fold, and with a significant and higher maximal activity on cephalosporin C as compared to glutaryl‐7‐amino cephalosporanic acid (e.g., 3.8 vs. 2.7 U/mg protein, respectively, for the A215Y‐H296S‐H309S mutant). Our data in a bioreactor indicate an ∼90% conversion of cephalosporin C to 7‐amino‐cephalosporanic acid in a single deacylation step. The evolved acylase variants we produced are enzymes with a new substrate specificity, not found in nature, and represent a hallmark for industrial production of 7‐amino cephalosporanic acid.


Trends in Biotechnology | 2010

β-Lactam and glycopeptide antibiotics: First and last line of defense?

Srdjan Jovetic; Yang Zhu; Giorgia Letizia Marcone; Flavia Marinelli; J. Tramper

Most infections are caused by bacteria, many of which are ever-evolving and resistant to nearly all available antibiotics. β-Lactams and glycopeptides are used to combat these infections by inhibiting bacterial cell-wall synthesis. This mechanism remains an interesting target in the search for new antibiotics in light of failed genomic approaches and the limited input of major pharmaceutical companies. Several strategies have enriched the pipeline of bacterial cell-wall inhibitors; examples include combining screening strategies with lesser-explored microbial diversity, or reinventing known scaffolds based on structure-function relationships. Drugs developed using novel strategies will contribute to the arsenal in fight against the continued emergence of bacterial resistance.


Antimicrobial Agents and Chemotherapy | 2010

Novel Mechanism of Glycopeptide Resistance in the A40926 Producer Nonomuraea sp. ATCC 39727

Giorgia Letizia Marcone; Fabrizio Beltrametti; Elisa Binda; Lucia Carrano; Lucy Foulston; Andrew Hesketh; Mervyn J. Bibb; Flavia Marinelli

ABSTRACT In glycopeptide-resistant enterococci and staphylococci, high-level resistance is achieved by replacing the C-terminal d-alanyl-d-alanine of lipid II with d-alanyl-d-lactate, thus reducing glycopeptide affinity for cell wall targets. Reorganization of the cell wall in these organisms is directed by the vanHAX gene cluster. Similar self-resistance mechanisms have been reported for glycopeptide-producing actinomycetes. We investigated glycopeptide resistance in Nonomuraea sp. ATCC 39727, the producer of the glycopeptide A40926, which is the precursor of the semisynthetic antibiotic dalbavancin, which is currently in phase III clinical trials. The MIC of Nonomuraea sp. ATCC 39727 toward A40926 during vegetative growth was 4 μg/ml, but this increased to ca. 20 μg/ml during A40926 production. vanHAX gene clusters were not detected in Nonomuraea sp. ATCC 39727 by Southern hybridization or by PCR with degenerate primers. However, the dbv gene cluster for A40926 production contains a gene, vanY (ORF7), potentially encoding an enzyme capable of removing the terminal d-Ala residue of pentapeptide peptidoglycan precursors. Analysis of UDP-linked peptidoglycan precursors in Nonomuraea sp. ATCC 39727 revealed the predominant presence of the tetrapeptide UDP-MurNAc-l-Ala-d-Glu-meso-Dap-d-Ala and only traces of the pentapeptide UDP-MurNAc-l-Ala-d-Glu-meso-Dap-d-Ala-d-Ala. This suggested a novel mechanism of glycopeptide resistance in Nonomuraea sp. ATCC 39727 that was based on the d,d-carboxypeptidase activity of vanY. Consistent with this, a vanY-null mutant of Nonomuraea sp. ATCC 39727 demonstrated a reduced level of glycopeptide resistance, without affecting A40926 productivity. Heterologous expression of vanY in a sensitive Streptomyces species, Streptomyces venezuelae, resulted in higher levels of glycopeptide resistance.


Microbial Cell Factories | 2011

Actinoplanes teichomyceticus ATCC 31121 as a cell factory for producing teicoplanin

Carlo Taurino; Luca Frattini; Giorgia Letizia Marcone; Luciano Gastaldo; Flavia Marinelli

BackgroundTeicoplanin is a glycopeptide antibiotic used clinically in Europe and in Japan for the treatment of multi-resistant Gram-positive infections. It is produced by fermenting Actinoplanes teichomyceticus. The pharmaceutically active principle is teicoplanin A2, a complex of compounds designated T-A2-1-A2-5 differing in the length and branching of the fatty acid moiety linked to the glucosamine residue on the heptapeptide scaffold. According to European and Japanese Pharmacopoeia, components of the drug must be reproduced in fixed amounts to be authorized for clinical use.ResultsWe report our studies on optimizing the fermentation process to produce teicoplanin A2 in A. teichomyceticus ATCC 31121. Robustness of the process was assessed on scales from a miniaturized deep-well microtiter system to flasks and 3-L bioreactor fermenters. The production of individual factors T-A2-1-A2-5 was modulated by adding suitable precursors to the cultivation medium. Specific production of T-A2-1, characterized by a linear C10:1 acyl moiety, is enhanced by adding methyl linoleate, trilinoleate, and crude oils such as corn and cottonseed oils. Accumulation of T-A2-3, characterized by a linear C10:0 acyl chain, is stimulated by adding methyl oleate, trioleate, and oils such as olive and lard oils. Percentages of T-A2-2, T-A2-4, and, T-A2-5 bearing the iso-C10:0, anteiso-C11:0, and iso-C11:0 acyl moieties, respectively, are significantly increased by adding precursor amino acids L-valine, L-isoleucine, and L-leucine. Along with the stimulatory effect on specific complex components, fatty acid esters, oils, and amino acids (with the exception of L-valine) inhibit total antibiotic productivity overall. By adding industrial oils to medium containing L-valine the total production is comparable, giving unusual complex compositions.ConclusionsSince the cost and the quality of teicoplanin production depend mainly on the fermentation process, we developed a robust and scalable fermentation process by using an industrial medium in which a complex composition can be modulated by the combined addition of suitable precursors. This work was performed in the wild-type strain ATCC 31121, which has a clear genetic background. This is important for starting a rational improvement program and also helps to better control teicoplanin production during process and strain development.


The Journal of Antibiotics | 2010

Protoplast preparation and reversion to the normal filamentous growth in antibiotic-producing uncommon actinomycetes

Giorgia Letizia Marcone; Lucia Carrano; Flavia Marinelli; Fabrizio Beltrametti

Protoplast preparation, regeneration and fusion represent essential tools for those poorly studied biotechnologically valuable microorganisms inapplicable with the current molecular biology protocols. The protoplast production and regeneration method developed for Planobispora rosea and using the combination of hen egg-white lysozyme (HEWL) and Streptomyces globisporus mutanolysin was applied to a set of antibiotic-producing filamentous actinomycetes belonging to the Streptosporangiaceae, Micromonosporaceae and Streptomycetaceae. 107–109 protoplasts were obtained from 100 ml of culture, after incubation times in the digestion solution ranging from a few hours to 1 or 2 days depending on the strain. The efficiency of protoplast reversion to the normal filamentous growth varied from 0.1 to nearly 50%. Analysis of cell wall peptidoglycan in three representative strains (Nonomuraea sp. ATCC 39727, Actinoplanes teichomyceticus ATCC 31121 and Streptomyces coelicolor A3(2)) has evidenced structural variations in the glycan strand and in the peptide chain, which may account for the different response to cell digestion and protoplast regeneration treatments.


The Journal of Antibiotics | 2014

Old and New Glycopeptide Antibiotics: Action and Resistance

Elisa Binda; Flavia Marinelli; Giorgia Letizia Marcone

Glycopeptides are considered antibiotics of last resort for the treatment of life-threatening infections caused by relevant Gram-positive human pathogens, such as Staphylococcus aureus, Enterococcus spp. and Clostridium difficile. The emergence of glycopeptide-resistant clinical isolates, first among enterococci and then in staphylococci, has prompted research for second generation glycopeptides and a flurry of activity aimed at understanding resistance mechanisms and their evolution. Glycopeptides are glycosylated non-ribosomal peptides produced by a diverse group of soil actinomycetes. They target Gram-positive bacteria by binding to the acyl-d-alanyl-d-alanine (d-Ala-d-Ala) terminus of the growing peptidoglycan on the outer surface of the cytoplasmatic membrane. Glycopeptide-resistant organisms avoid such a fate by replacing the d-Ala-d-Ala terminus with d-alanyl-d-lactate (d-Ala-d-Lac) or d-alanyl-d-serine (d-Ala-d-Ser), thus markedly reducing antibiotic affinity for the cellular target. Resistance has manifested itself in enterococci and staphylococci largely through the expression of genes (named van) encoding proteins that reprogram cell wall biosynthesis and, thus, evade the action of the antibiotic. These resistance mechanisms were most likely co-opted from the glycopeptide producing actinomycetes, which use them to avoid suicide during antibiotic production, rather than being orchestrated by pathogen bacteria upon continued treatment. van-like gene clusters, similar to those described in enterococci, were in fact identified in many glycopeptide-producing actinomycetes, such as Actinoplanes teichomyceticus, which produces teicoplanin, and Streptomyces toyocaensis, which produces the A47934 glycopeptide. In this paper, we describe the natural and semi-synthetic glycopeptide antibiotics currently used as last resort drugs for Gram-positive infections and compare the van gene-based strategies of glycopeptide resistance among the pathogens and the producing actinomycetes. Particular attention is given to the strategy of immunity recently described in Nonomuraea sp. ATCC 39727. Nonomuraea sp. ATCC 39727 is the producer of A40926, which is the natural precursor of the second generation semi-synthetic glycopeptide dalbavancin, very recently approved for acute bacterial skin and skin structure infections. A thorough understanding of glycopeptide immunity in this producing microorganism may be particularly relevant to predict and eventually control the evolution of resistance that might arise following introduction of dalbavancin and other second generation glycopeptides into clinics.


BioMed Research International | 2015

Antibacterial Discovery and Development: From Gene to Product and Back

Victor Fedorenko; Olga Genilloud; Giorgia Letizia Marcone; Flavia Marinelli; Yossi Paitan; Eliora Z. Ron

Concern over the reports of antibiotic-resistant bacterial infections in hospitals and in the community has been publicized in the media, accompanied by comments on the risk that we may soon run out of antibiotics as a way to control infectious disease. Infections caused by Enterococcus faecium, Staphylococcus aureus, Klebsiella species, Clostridium difficile, Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli, and other Enterobacteriaceae species represent a major public health burden. Despite the pharmaceutical sectors lack of interest in the topic in the last decade, microbial natural products continue to represent one of the most interesting sources for discovering and developing novel antibacterials. Research in microbial natural product screening and development is currently benefiting from progress that has been made in other related fields (microbial ecology, analytical chemistry, genomics, molecular biology, and synthetic biology). In this paper, we review how novel and classical approaches can be integrated in the current processes for microbial product screening, fermentation, and strain improvement.


FEBS Journal | 2012

Characterization of VanYn, a novel D,D-peptidase/D,D-carboxypeptidase involved in glycopeptide antibiotic resistance in Nonomuraea sp. ATCC 39727

Elisa Binda; Giorgia Letizia Marcone; Loredano Pollegioni; Flavia Marinelli

VanYn is a novel protein involved in the mechanism of self‐resistance in Nonomuraea sp. ATCC 39727, which produces the glycopeptide antibiotic A40926, the precursor of the second‐generation dalbavancin, which is in phase III of clinical development. VanYn (196 residues) is encoded by the dbv7 gene within the dbv biosynthetic cluster devoted to A40926 production. C‐terminal His6‐tagged VanYn was successfully expressed as a soluble and active protein in Escherichia coli. The analysis of the sequence suggests the presence of a hydrophobic transmembrane portion and two conserved sequences (SxHxxGxAxD and ExxH) in the extracytoplasmic domain that are potentially involved in coordination of Zn2+ and catalytic activity. The presence of these conserved sequences indicates a similar mechanism of action and substrate binding in VanYn as in VanY, VanX and VanXY Zn2+‐dependent d,d‐carboxypeptidases and d‐Ala‐d‐Ala dipeptidases acting on peptidoglycan maturation and involved in glycopeptide resistance in pathogens. On substrates mimicking peptidoglycan precursors, VanYn shows d,d‐carboxypeptidase and d,d‐dipeptidase activity, but lacks d,d‐carboxyesterase ability on d‐Ala‐d‐Lac‐terminating peptides. VanYn belongs to the metallo‐d,d‐carboxypeptidase family, but it is inhibited by β‐lactams. Its characterization provides new insights into the evolution and transfer of resistance determinants from environmental glycopeptide‐producing actinomycetes (such as Nonomuraea sp.) to glycopeptide‐resistant pathogens (enterococci and staphylococci). It may also contribute to an early warning system for emerging resistance mechanisms following the introduction into clinics of a second‐generation glycopeptide such as dalbavancin.


Antimicrobial Agents and Chemotherapy | 2014

Relationship between Glycopeptide Production and Resistance in the Actinomycete Nonomuraea sp. ATCC 39727

Giorgia Letizia Marcone; Elisa Binda; Lucia Carrano; Mervyn J. Bibb; Flavia Marinelli

ABSTRACT Glycopeptides and β-lactams inhibit bacterial peptidoglycan synthesis in Gram-positive bacteria; resistance to these antibiotics is studied intensively in enterococci and staphylococci because of their relevance to infectious disease. Much less is known about antibiotic resistance in glycopeptide-producing actinomycetes that are likely to represent the evolutionary source of resistance determinants found in bacterial pathogens. Nonomuraea sp. ATCC 39727, the producer of A40926 (the precursor for the semisynthetic dalbavancin), does not harbor the canonical vanHAX genes. Consequently, we investigated the role of the β-lactam-sensitive d,d-peptidase/d,d-carboxypeptidase encoded by vanYn, the only van-like gene found in the A40926 biosynthetic gene cluster, in conferring immunity to the antibiotic in Nonomuraea sp. ATCC 39727. Taking advantage of the tools developed recently to genetically manipulate this uncommon actinomycete, we varied vanYn gene dosage and expressed vanHatAatXat from the teicoplanin producer Actinoplanes teichomyceticus in Nonomuraea sp. ATCC 39727. Knocking out vanYn, complementing a vanYn mutant, or duplicating vanYn had no effect on growth but influenced antibiotic resistance and, in the cases of complementation and duplication, antibiotic production. Nonomuraea sp. ATCC 39727 was found to be resistant to penicillins, but its glycopeptide resistance was diminished in the presence of penicillin G, which inhibits VanYn activity. The heterologous expression of vanHatAatXat increased A40926 resistance in Nonomuraea sp. ATCC 39727 but did not increase antibiotic production, indicating that the level of antibiotic production is not directly determined by the level of resistance. The vanYn-based self-resistance in Nonomuraea sp. ATCC 39727 resembles the glycopeptide resistance mechanism described recently in mutants of Enterococcus faecium selected in vitro for high-level resistance to glycopeptides and penicillins.


International Journal of Systematic and Evolutionary Microbiology | 2016

Classification of Nonomuraea sp. ATCC 39727, an actinomycete that produces the glycopeptide antibiotic A40926, as Nonomuraea gerenzanensis sp. nov.

Claudia Dalmastri; Luciano Gastaldo; Giorgia Letizia Marcone; Elisa Binda; Terenzio Congiu; Flavia Marinelli

Strain ATCC 39727, which produces the antibiotic A40926 (the natural precursor of the antibiotic dalbavancin), was isolated from a soil sample collected in India, and it was originally classified as a member of the genus Actinomadura on the base of morphology and cell-wall composition. A phylogenetic analysis based on 16S rRNA gene sequences indicates that the strain forms a distinct clade within the genus Nonomuraea, and it is most closely related to Nonomuraea angiospora DSM 43173T (98.72 % similarity) and Nonomuraea jabiensis A4036T (98.69 %). The strain forms an extensively branched substrate mycelium and aerial hyphae that form spiral chains of spores with ridged surfaces. The cell wall contains meso-diaminopimelic acid and the whole-cell sugars are glucose, ribose, galactose, mannose and madurose (madurose as the diagnostic sugar). The N-acyl type of muramic acid is acetyl. The predominant menaquinone is MK-9(H4), with minor amounts of MK-9(H2), MK-9(H6) and MK-9(H0). The polar-lipid profile includes diphosphatidylglycerol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine, phosphatidylmethylethanolamine, hydroxyphosphatidylmethylethanolamine, phosphatidylinositol and a series of uncharacterized phospholipids, glycolipids and phosphoglycolipids. The major cellular fatty acids are iso-C16 : 0 and 10-methyl C17 : 0. The genomic DNA G+C content is 71.2 mol%. Significant differences in the morphological, chemotaxonomic and biochemical data, together with DNA-DNA relatedness between strain ATCC 39727 and closely related type strains, clearly demonstrated that strain ATCC 39727 represents a novel species of the genus Nonomuraea, for which the name Nonomuraea gerenzanensis sp. nov. is proposed. The type strain is ATCC 39727T ( = DSM 100948T).

Collaboration


Dive into the Giorgia Letizia Marcone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elisa Binda

University of Insubria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge