Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesca Bersani is active.

Publication


Featured researches published by Francesca Bersani.


Science | 2014

Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility

Min Yu; Aditya Bardia; Nicola Aceto; Francesca Bersani; Marissa W. Madden; Maria C. Donaldson; Rushil Desai; Huili Zhu; Valentine Comaills; Zongli Zheng; Ben S. Wittner; Petar Stojanov; Elena F. Brachtel; Dennis C. Sgroi; Ravi Kapur; Toshihiro Shioda; David T. Ting; Sridhar Ramaswamy; Gad Getz; A. John Iafrate; Cyril H. Benes; Mehmet Toner; Shyamala Maheswaran; Daniel A. Haber

Staying one step ahead of tumors Cancer treatments require continual adjustment. A drug that works initially will lose its potency as the tumor acquires new mutations that allow it to bypass the drugs lethal effects. To stay ahead of the tumor, oncologists need a noninvasive way to collect tumor cells from patients over the course of their treatment. Analyzing the mutations in these samples may help them choose the right drugs as the tumors change. In a small study of breast cancer patients, Yu et al. show that rare tumor cells circulating in the blood can be captured in viable form and used for this purpose. Science, this issue p. 216 Mutational analysis of tumor cells isolated from the blood of cancer patients may help optimize treatment selection. Circulating tumor cells (CTCs) are present at low concentrations in the peripheral blood of patients with solid tumors. It has been proposed that the isolation, ex vivo culture, and characterization of CTCs may provide an opportunity to noninvasively monitor the changing patterns of drug susceptibility in individual patients as their tumors acquire new mutations. In a proof-of-concept study, we established CTC cultures from six patients with estrogen receptor–positive breast cancer. Three of five CTC lines tested were tumorigenic in mice. Genome sequencing of the CTC lines revealed preexisting mutations in the PIK3CA gene and newly acquired mutations in the estrogen receptor gene (ESR1), PIK3CA gene, and fibroblast growth factor receptor gene (FGFR2), among others. Drug sensitivity testing of CTC lines with multiple mutations revealed potential new therapeutic targets. With optimization of CTC culture conditions, this strategy may help identify the best therapies for individual cancer patients over the course of their disease.


Journal of Clinical Investigation | 2009

The muscle-specific microRNA miR-206 blocks human rhabdomyosarcoma growth in xenotransplanted mice by promoting myogenic differentiation

Riccardo Taulli; Francesca Bersani; Valentina Foglizzo; Alessandra Linari; Elisa Vigna; Marc Ladanyi; Thomas Tuschl; Carola Ponzetto

Many microRNAs (miRNAs), posttranscriptional regulators of numerous cellular processes and developmental events, are downregulated in tumors. However, their role in tumorigenesis remains largely unknown. In this work, we examined the role of the muscle-specific miRNAs miR-1 and miR-206 in human rhabdomyosarcoma (RMS), a soft tissue sarcoma thought to arise from skeletal muscle progenitors. We have shown that miR-1 was barely detectable in primary RMS of both the embryonal and alveolar subtypes and that both miR-1 and miR-206 failed to be induced in RMS cell lines upon serum deprivation. Moreover, reexpression of miR-206 in RMS cells promoted myogenic differentiation and blocked tumor growth in xenografted mice by switching the global mRNA expression profile to one that resembled mature muscle. Finally, we showed that the product of the MET proto-oncogene, the Met tyrosine-kinase receptor, which is overexpressed in RMS and has been implicated in RMS pathogenesis, was downregulated in murine satellite cells by miR-206 at the onset of normal myogenesis. Thus, failure of posttranscriptional modulation may underlie Met overexpression in RMS and other types of cancer. We propose that tissue-specific miRNAs such as miR-1 and miR-206, given their ability to modulate hundreds of transcripts and to act as nontoxic differentiating agents, may override the genomic heterogeneity of solid tumors and ultimately hold greater therapeutic potential than single gene-directed drugs.


Science | 2015

Alternative Lengthening of Telomeres Renders Cancer Cells Hypersensitive to ATR Inhibitors

Rachel Litman Flynn; Kelli E. Cox; Maya Jeitany; Hiroaki Wakimoto; Alysia R. Bryll; Neil J. Ganem; Francesca Bersani; Jose R. Pineda; Mario L. Suvà; Cyril H. Benes; Daniel A. Haber; François D. Boussin; Lee Zou

Cancers alternative means to an end To stay alive and proliferating, tumor cells must maintain their telomeres: the DNA sequences at the ends of chromosomes. The majority accomplish this by activating the enzyme telomerase. However, certain tumor types favor a different mechanism called alternative lengthening of telomeres (ALT), which involves DNA recombination. Flynn et al. delineated the molecular events that occur at the telomeres of ALT-proficient tumor cells by studying the function of a protein that is altered by mutation in these tumors. The analysis revealed a specific protein kinase that is essential for ALT, which could in principle be targeted to halt tumor growth. Science, this issue p. 273 A potential therapeutic strategy is identified for tumor cells that maintain their telomeres by an unusual mechanism. Cancer cells rely on telomerase or the alternative lengthening of telomeres (ALT) pathway to overcome replicative mortality. ALT is mediated by recombination and is prevalent in a subset of human cancers, yet whether it can be exploited therapeutically remains unknown. Loss of the chromatin-remodeling protein ATRX associates with ALT in cancers. Here, we show that ATRX loss compromises cell-cycle regulation of the telomeric noncoding RNA TERRA and leads to persistent association of replication protein A (RPA) with telomeres after DNA replication, creating a recombinogenic nucleoprotein structure. Inhibition of the protein kinase ATR, a critical regulator of recombination recruited by RPA, disrupts ALT and triggers chromosome fragmentation and apoptosis in ALT cells. The cell death induced by ATR inhibitors is highly selective for cancer cells that rely on ALT, suggesting that such inhibitors may be useful for treatment of ALT-positive cancers.


Cell Reports | 2014

Single-Cell RNA Sequencing Identifies Extracellular Matrix Gene Expression by Pancreatic Circulating Tumor Cells

David T. Ting; Ben S. Wittner; Matteo Ligorio; Nicole Vincent Jordan; Ajay M. Shah; David T. Miyamoto; Nicola Aceto; Francesca Bersani; Brian W. Brannigan; Kristina Xega; Jordan C. Ciciliano; Huili Zhu; Olivia C. MacKenzie; Julie Trautwein; Kshitij S. Arora; Mohammad Shahid; Haley Ellis; Na Qu; Nabeel Bardeesy; Miguel Rivera; Vikram Deshpande; Cristina R. Ferrone; Ravi Kapur; Sridhar Ramaswamy; Toshi Shioda; Mehmet Toner; Shyamala Maheswaran; Daniel A. Haber

SUMMARY Circulating tumor cells (CTCs) are shed from primary tumors into the bloodstream, mediating the hematogenous spread of cancer to distant organs. To define their composition, we compared genome-wide expression profiles of CTCs with matched primary tumors in a mouse model of pancreatic cancer, isolating individual CTCs using epitope-independent microfluidic capture, followed by single-cell RNA sequencing. CTCs clustered separately from primary tumors and tumor-derived cell lines, showing low-proliferative signatures, enrichment for the stem-cell-associated gene Aldh1a2, biphenotypic expression of epithelial and mesenchymal markers, and expression of Igfbp5, a gene transcript enriched at the epithelial-stromal interface. Mouse as well as human pancreatic CTCs exhibit a very high expression of stromal-derived extracellular matrix (ECM) proteins, including SPARC, whose knockdown in cancer cells suppresses cell migration and invasiveness. The aberrant expression by CTCs of stromal ECM genes points to their contribution of microenvironmental signals for the spread of cancer to distant organs.


Cancer Gene Therapy | 2005

RNAi technology and lentiviral delivery as a powerful tool to suppress Tpr-Met-mediated tumorigenesis

Riccardo Taulli; Paolo Accornero; Antonia Follenzi; Tony Mangano; Alessandro Morotti; Claudio Scuoppo; Paolo E. Forni; Francesca Bersani; Tiziana Crepaldi; Roberto Chiarle; Luigi Naldini; Carola Ponzetto

Tpr-Met, the oncogenic counterpart of the Met receptor, has been detected in gastric cancers, as well as in precursor lesions and in the adjacent normal gastric mucosa. This has prompted the suggestion that Tpr-Met may predispose to the development of gastric tumors. Given the sequence specificity of RNA interference, oncogenes activated by point mutation or rearrangements can be targeted while spearing the product of the wild-type allele. In this work, we report specific suppression of Tpr-Met expression and inhibition of Tpr-Met-mediated transformation and tumorigenesis by means of a short interfering RNA (siRNA) directed toward the Tpr-Met junction (anti-TM2). When delivered by a lentiviral vector, anti-TM2 siRNA was effective also in mouse embryonal fibroblasts or epithelial cells expressing high levels of Tpr-Met. Our results suggest that lentiviral-mediated delivery of anti-TM2 siRNA may be developed into a powerful tool to treat Tpr-Met-positive cancers.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Pericentromeric satellite repeat expansions through RNA-derived DNA intermediates in cancer

Francesca Bersani; Eunjung Lee; Peter V. Kharchenko; Andrew W. Xu; Mingzhu Liu; Kristina Xega; Olivia C. MacKenzie; Brian W. Brannigan; Ben S. Wittner; Hyunchul Jung; Sridhar Ramaswamy; Peter J. Park; Shyamala Maheswaran; David T. Ting; Daniel A. Haber

Significance Unique among the large number of noncoding RNA species, the pericentromeric human satellite II (HSATII) repeat is massively expressed in a broad set of epithelial cancers but is nearly undetectable in normal tissues. Here, we show that deregulation of HSATII expression is tightly linked to growth under nonadherent conditions, and we uncover an unexpected mechanism by which HSATII RNA-derived DNA (rdDNA) leads to progressive elongation of pericentromeric regions in tumors. The remarkable specificity of HSATII overexpression in cancers, together with the consequences of targeting its RT, points to a potential novel vulnerability of cancer cells. Aberrant transcription of the pericentromeric human satellite II (HSATII) repeat is present in a wide variety of epithelial cancers. In deriving experimental systems to study its deregulation, we observed that HSATII expression is induced in colon cancer cells cultured as xenografts or under nonadherent conditions in vitro, but it is rapidly lost in standard 2D cultures. Unexpectedly, physiological induction of endogenous HSATII RNA, as well as introduction of synthetic HSATII transcripts, generated cDNA intermediates in the form of DNA/RNA hybrids. Single molecule sequencing of tumor xenografts showed that HSATII RNA-derived DNA (rdDNA) molecules are stably incorporated within pericentromeric loci. Suppression of RT activity using small molecule inhibitors reduced HSATII copy gain. Analysis of whole-genome sequencing data revealed that HSATII copy number gain is a common feature in primary human colon tumors and is associated with a lower overall survival. Together, our observations suggest that cancer-associated derepression of specific repetitive sequences can promote their RNA-driven genomic expansion, with potential implications on pericentromeric architecture.


Oncogene | 2014

Failure to downregulate the BAF53a subunit of the SWI/SNF chromatin remodeling complex contributes to the differentiation block in rhabdomyosarcoma.

Riccardo Taulli; Valentina Foglizzo; Deborah Morena; Davide Martino Coda; Ugo Ala; Francesca Bersani; Nicola Maestro; Carola Ponzetto

Rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children and young adults, is characterized by a partially differentiated myogenic phenotype. We have previously shown that the blocking of tumor growth and resumption of differentiation can be achieved by re-expression of miR-206, a muscle-enriched microRNA missing in RMS. In this work, we focused on BAF53a, one of the genes downregulated in miR-206-expressing RMS cells, which codes for a subunit of the SWI/SNF chromatin remodeling complex. Here we show that the BAF53a transcript is significantly higher in primary RMS tumors than in normal muscle, and is a direct target of miR-206. Sustained expression of BAF53a interferes with differentiation in myogenic cells, whereas its silencing in RMS cells increases expression of myogenic markers and inhibits proliferation and anchorage-independent growth. Accordingly, BAF53a silencing also impairs embryonal RMS and alveolar RMS tumor growth, inducing their morphological and biochemical differentiation. These results indicate that failure to downregulate the BAF53a subunit may contribute to the pathogenesis of RMS, and suggest that BAF53a may represent a novel therapeutic target for this tumor.


eLife | 2016

Hepatocyte Growth Factor-mediated satellite cells niche perturbation promotes development of distinct sarcoma subtypes

Deborah Morena; Nicola Maestro; Francesca Bersani; Paolo E. Forni; Marcello Francesco Lingua; Valentina Foglizzo; Petar Šćepanović; Silvia Miretti; Alessandro Morotti; Jack F. Shern; Javed Khan; Ugo Ala; Paolo Provero; Valentina Sala; Tiziana Crepaldi; Patrizia Gasparini; Michela Casanova; Andrea Ferrari; Gabriella Sozzi; Roberto Chiarle; Carola Ponzetto; Riccardo Taulli

Embryonal Rhabdomyosarcoma (ERMS) and Undifferentiated Pleomorphic Sarcoma (UPS) are distinct sarcoma subtypes. Here we investigate the relevance of the satellite cell (SC) niche in sarcoma development by using Hepatocyte Growth Factor (HGF) to perturb the niche microenvironment. In a Pax7 wild type background, HGF stimulation mainly causes ERMS that originate from satellite cells following a process of multistep progression. Conversely, in a Pax7 null genotype ERMS incidence drops, while UPS becomes the most frequent subtype. Murine EfRMS display genetic heterogeneity similar to their human counterpart. Altogether, our data demonstrate that selective perturbation of the SC niche results in distinct sarcoma subtypes in a Pax7 lineage-dependent manner, and define a critical role for the Met axis in sarcoma initiation. Finally, our results provide a rationale for the use of combination therapy, tailored on specific amplifications and activated signaling pathways, to minimize resistance emerging from sarcomas heterogeneity. DOI: http://dx.doi.org/10.7554/eLife.12116.001


European Journal of Cancer | 2008

Bortezomib-mediated proteasome inhibition as a potential strategy for the treatment of rhabdomyosarcoma

Francesca Bersani; Riccardo Taulli; Paolo Accornero; Alessandro Morotti; Silvia Miretti; Tiziana Crepaldi; Carola Ponzetto

Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma of childhood, divided into two major histological subtypes, embryonal (ERMS) and alveolar (ARMS). To explore the possibility that the proteasome could be a target of therapeutic value in rhabdomyosarcoma, we treated several RMS cell lines with the proteasome inhibitor bortezomib (Velcade or PS-341) at a concentration of 13-26 nM. RMS cells showed high sensitivity to the drug, whereas no toxic effect was observed in primary human myoblasts. In both ERMS and ARMS cells bortezomib promoted apoptosis, activation of caspase 3 and 7 and induced a dose-dependent reduction of anchorage-independent growth. Furthermore, bortezomib induced activation of the stress response, cell cycle arrest and the reduction of NF-kappaB transcriptional activity. Finally, bortezomib decreased tumour growth and impaired cells viability, proliferation and angiogenesis in a xenograft model of RMS. In conclusion, our data indicate that bortezomib could represent a novel drug against RMS tumours.


Cancer Research | 2014

Bioengineered implantable scaffolds as a tool to study stromal-derived factors in metastatic cancer models

Francesca Bersani; Jungwoo Lee; Min Yu; Robert Morris; Rushil Desai; Sridhar Ramaswamy; Mehmet Toner; Daniel A. Haber; Biju Parekkadan

Modeling the hematogenous spread of cancer cells to distant organs poses one of the greatest challenges in the study of human metastasis. Both tumor cell-intrinsic properties as well as interactions with reactive stromal cells contribute to this process, but identification of relevant stromal signals has been hampered by the lack of models allowing characterization of the metastatic niche. Here, we describe an implantable bioengineered scaffold, amenable to in vivo imaging, ex vivo manipulation, and serial transplantation for the continuous study of human metastasis in mice. Orthotopic or systemic inoculation of tagged human cancer cells into the mouse leads to the release of circulating tumor cells into the vasculature, which seed the scaffold, initiating a metastatic tumor focus. Mouse stromal cells can be readily recovered and profiled, revealing differential expression of cytokines, such as IL1β, from tumor-bearing versus unseeded scaffolds. Finally, this platform can be used to test the effect of drugs on suppressing initiation of metastatic lesions. This generalizable model to study cancer metastasis may thus identify key stromal-derived factors with important implications for basic and translational cancer research.

Collaboration


Dive into the Francesca Bersani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberto Chiarle

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge