Francesca Bovolo
fondazione bruno kessler
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francesca Bovolo.
IEEE Transactions on Geoscience and Remote Sensing | 2005
Francesca Bovolo; Lorenzo Bruzzone
This paper presents a novel approach to change detection in multitemporal synthetic aperture radar (SAR) images. The proposed approach exploits a wavelet-based multiscale decomposition of the log-ratio image (obtained by a comparison of the original multitemporal data) aimed at achieving different scales (levels) of representation of the change signal. Each scale is characterized by a different tradeoff between speckle reduction and preservation of geometrical details. For each pixel, a subset of reliable scales is identified on the basis of a local statistic measure applied to scale-dependent log-ratio images. The final change-detection result is obtained according to an adaptive scale-driven fusion algorithm. Experimental results obtained on multitemporal SAR images acquired by the ERS-1 satellite confirm the effectiveness of the proposed approach.
IEEE Transactions on Geoscience and Remote Sensing | 2007
Francesca Bovolo; Lorenzo Bruzzone
This paper addresses unsupervised change detection by proposing a proper framework for a formal definition and a theoretical study of the change vector analysis (CVA) technique. This framework, which is based on the representation of the CVA in polar coordinates, aims at: 1) introducing a set of formal definitions in the polar domain (which are linked to the properties of the data) for a better general description (and thus understanding) of the information present in spectral change vectors; 2) analyzing from a theoretical point of view the distributions of changed and unchanged pixels in the polar domain (also according to possible simplifying assumptions); 3) driving the implementation of proper preprocessing procedures to be applied to multitemporal images on the basis of the results of the theoretical study on the distributions; and 4) defining a solid background for the development of advanced and accurate automatic change-detection algorithms in the polar domain. The findings derived from the theoretical analysis on the statistical models of classes have been validated on real multispectral and multitemporal remote sensing images according to both qualitative and quantitative analyses. The results obtained confirm the interest of the proposed framework and the validity of the related theoretical analysis
IEEE Transactions on Geoscience and Remote Sensing | 2007
Francesca Bovolo; Lorenzo Bruzzone
This paper presents a split-based approach (SBA) to automatic and unsupervised change detection in large-size multitemporal remote-sensing images. Unlike standard methods that are presented in the literature, the proposed approach can detect in a consistent and reliable way changes in images of large size also when the extension of the changed area is small (and, therefore, the prior probability of the class of changed pixels is very small). The method is based on the following: 1) a split of the large-size image into subimages; 2) an adaptive analysis of each subimage; and 3) an automatic split-based threshold-selection procedure. This general approach is used for defining a system for damage assessment in multitemporal synthetic aperture radar (SAR) images. The proposed system has been developed to properly identify different levels of damages that are induced by tsunamis along coastal areas. Experimental results that are obtained on multitemporal RADARSAT-1 SAR images of the Sumatra Island, Indonesia, confirm the effectiveness of both the proposed SBA and the presented system for tsunami-damage assessment
IEEE Transactions on Geoscience and Remote Sensing | 2010
Jordi Mũnoz-Marí; Francesca Bovolo; Luis Gómez-Chova; Lorenzo Bruzzone; Gustavo Camp-Valls
This paper presents two semisupervised one-class support vector machine (OC-SVM) classifiers for remote sensing applications. In one-class image classification, one tries to detect pixels belonging to one of the classes in the image and reject the others. When few labeled pixels of only one class are available, obtaining a reliable classifier is a difficult task. In the particular case of SVM-based classifiers, this task is even harder because the free parameters of the model need to be finely adjusted, but no clear criterion can be adopted. In order to improve the OC-SVM classifier accuracy and alleviate the problem of free-parameter selection, the information provided by unlabeled samples present in the scene can be used. In this paper, we present two state-of-the-art algorithms for semisupervised one-class classification for remote sensing classification problems. The first proposed algorithm is based on modifying the OC-SVM kernel by modeling the data marginal distribution with the graph Laplacian built with both labeled and unlabeled samples. The second one is based on a simple modification of the standard SVM cost function which penalizes more the errors made when classifying samples of the target class. The good performance of the proposed methods is illustrated in four challenging remote sensing image classification scenarios where the goal is to detect one of the classes present on the scene. In particular, we present results for multisource urban monitoring, hyperspectral crop detection, multispectral cloud screening, and change-detection problems. Experimental results show the suitability of the proposed techniques, particularly in cases with few or poorly representative labeled samples.
IEEE Transactions on Geoscience and Remote Sensing | 2008
Francesca Bovolo; Lorenzo Bruzzone; Mattia Marconcini
This paper presents a novel approach to unsupervised change detection in multispectral remote-sensing images. The proposed approach aims at extracting the change information by jointly analyzing the spectral channels of multitemporal images in the original feature space without any training data. This is accomplished by using a selective Bayesian thresholding for deriving a pseudotraining set that is necessary for initializing an adequately defined binary semisupervised support vector machine classifier. Starting from these initial seeds, the performs change detection in the original multitemporal feature space by gradually considering unlabeled patterns in the definition of the decision boundary between changed and unchanged pixels according to a semisupervised learning algorithm. This algorithm models the full complexity of the change-detection problem, which is only partially represented from the seed pixels included in the pseudotraining set. The values of the classifier parameters are then defined according to a novel unsupervised model-selection technique based on a similarity measure between change-detection maps obtained with different settings. Experimental results obtained on different multispectral remote-sensing images confirm the effectiveness of the proposed approach.
Proceedings of the IEEE | 2013
Lorenzo Bruzzone; Francesca Bovolo
This paper addresses change detection in multitemporal remote sensing images. After a review of the main techniques developed in remote sensing for the analysis of multitemporal data, the attention is focused on the challenging problem of change detection in very-high-resolution (VHR) multispectral images. In this context, we propose a framework that aims at defining a top-down approach to the design of the architecture of novel change-detection systems for multitemporal VHR images. The proposed framework explicitly models the presence of different radiometric changes on the basis of the properties of multitemporal images, extracts the semantic meaning of radiometric changes, identifies changes of interest with strategies designed on the basis of the specific application, and takes advantage of the intrinsic multiscale/multilevel properties of the objects and the high spatial correlation between pixels in a neighborhood. This framework defines guidelines for the development of a new generation of change-detection methods that can properly analyze multitemporal VHR images taking into account the intrinsic complexity associated with these data. In order to illustrate the use of the proposed framework, a real change-detection problem has been considered, which is described by a pair of VHR multispectral images acquired by the QuickBird satellite on the city of Trento, Italy. The proposed framework has been used for defining a system for change detection in the two images. Experimental results confirm the effectiveness of the developed system and the usefulness of the proposed framework.
IEEE Transactions on Geoscience and Remote Sensing | 2012
Francesca Bovolo; Silvia Marchesi; Lorenzo Bruzzone
The detection of multiple changes (i.e., different kinds of change) in multitemporal remote sensing images is a complex problem. When multispectral images having B spectral bands are considered, an effective solution to this problem is to exploit all available spectral channels in the framework of supervised or partially supervised approaches. However, in many real applications, it is difficult/impossible to collect ground truth information for either multitemporal or single-date images. On the opposite, unsupervised methods available in the literature are not effective in handling the full information present in multispectral and multitemporal images. They usually consider a simplified subspace of the original feature space having small dimensionality and, thus, characterized by a possible loss of change information. In this paper, we present a framework for the detection of multiple changes in bitemporal and multispectral remote sensing images that allows one to overcome the limits of standard unsupervised methods. The framework is based on the following: 1) a compressed yet efficient 2-D representation of the change information and 2) a two-step automatic decision strategy. The effectiveness of the proposed approach has been tested on two bitemporal and multispectral data sets having different properties. Results obtained on both data sets confirm the effectiveness of the proposed approach.
IEEE Transactions on Geoscience and Remote Sensing | 2007
Susmita Ghosh; Lorenzo Bruzzone; Swarnajyoti Patra; Francesca Bovolo; Ashish Ghosh
In this paper, we propose a context-sensitive technique for unsupervised change detection in multitemporal remote sensing images. This technique is based on a modified Hopfield neural network architecture designed to model spatial correlation between neighboring pixels of the difference image produced by comparing images acquired on the same area at different times. Each spatial position in the considered scene is represented by a neuron in the Hopfield network that is connected only to its neighboring units. These connections model the spatial correlation between neighboring pixels and are associated with a context-sensitive energy function that represents the overall status of the network. Change detection maps are obtained by iteratively updating the output status of the neurons until a minimum of the energy function is reached and the network assumes a stable state. A simple heuristic thresholding procedure is presented and adopted for initializing the network. The proposed change detection technique is unsupervised and distribution free. Experimental results carried out on two multispectral and multitemporal remote sensing images confirm the effectiveness of the proposed technique
International Journal of Applied Earth Observation and Geoinformation | 2013
Michele Volpi; Devis Tuia; Francesca Bovolo; Mikhail Kanevski; Lorenzo Bruzzone
In this paper we study an effective solution to deal with supervised change detection in very high geometrical resolution (VHR) images. High within-class variance as well as low between-class variance that characterize this kind of imagery make the detection and classification of ground cover transitions a difficult task. In order to achieve high detection accuracy, we propose the inclusion of spatial and contextual information issued from local textural statistics and mathematical morphology. To perform change detection, two architectures, initially developed for medium resolution images, are adapted for VHR: Direct Multi-date Classification and Difference Image Analysis. To cope with the high intra-class variability, we adopted a nonlinear classifier: the Support Vector Machines (SVM). The proposed approaches are successfully evaluated on two series of pansharpened QuickBird images.
IEEE Geoscience and Remote Sensing Letters | 2009
Francesca Bovolo
This letter presents a novel parcel-based context-sensitive technique for unsupervised change detection in very high geometrical resolution images. In order to improve pixel-based change-detection performance, we propose to exploit the spatial-context information in the framework of a multilevel approach. The proposed technique models the scene (and hence changes) at different resolution levels defining multitemporal and multilevel ldquoparcelsrdquo (i.e., small homogeneous regions shared by both original images). Change detection is achieved by applying a multilevel change vector analysis to each pixel of the considered images. This technique properly analyzes the multilevel and multitemporal parcel-based context information of the considered spatial position. The adaptive nature of multitemporal parcels and their multilevel representation allow one a proper modeling of complex objects in the investigated scene as well as borders and details of the changed areas. Experimental results confirm the effectiveness of the proposed approach.