Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesca Capon is active.

Publication


Featured researches published by Francesca Capon.


Nature Genetics | 2010

A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1

Amy Strange; Francesca Capon; Chris C. A. Spencer; Jo Knight; Michael E. Weale; Michael H. Allen; Anne Barton; Céline Bellenguez; Judith G.M. Bergboer; Jenefer M. Blackwell; Elvira Bramon; Suzannah Bumpstead; Juan P. Casas; Michael J. Cork; Aiden Corvin; Panos Deloukas; Alexander Dilthey; Audrey Duncanson; Sarah Edkins; Xavier Estivill; Oliver FitzGerald; Colin Freeman; Emiliano Giardina; Emma Gray; Angelika Hofer; Ulrike Hüffmeier; Sarah Hunt; Alan D. Irvine; Janusz Jankowski; Brian J. Kirby

To identify new susceptibility loci for psoriasis, we undertook a genome-wide association study of 594,224 SNPs in 2,622 individuals with psoriasis and 5,667 controls. We identified associations at eight previously unreported genomic loci. Seven loci harbored genes with recognized immune functions (IL28RA, REL, IFIH1, ERAP1, TRAF3IP2, NFKBIA and TYK2). These associations were replicated in 9,079 European samples (six loci with a combined P < 5 × 10−8 and two loci with a combined P < 5 × 10−7). We also report compelling evidence for an interaction between the HLA-C and ERAP1 loci (combined P = 6.95 × 10−6). ERAP1 plays an important role in MHC class I peptide processing. ERAP1 variants only influenced psoriasis susceptibility in individuals carrying the HLA-C risk allele. Our findings implicate pathways that integrate epidermal barrier dysfunction with innate and adaptive immune dysregulation in psoriasis pathogenesis.


American Journal of Human Genetics | 2002

Mandibuloacral Dysplasia Is Caused by a Mutation in LMNA-Encoding Lamin A/C

Giuseppe Novelli; Antoine Muchir; Federica Sangiuolo; Anne Helbling-Leclerc; Maria Rosaria D’Apice; Catherine Massart; Francesca Capon; Paolo Sbraccia; Massimo Federici; Renato Lauro; Cosimo Tudisco; Rosanna Pallotta; Gioacchino Scarano; Bruno Dallapiccola; Luciano Merlini; Gisèle Bonne

Mandibuloacral dysplasia (MAD) is a rare autosomal recessive disorder, characterized by postnatal growth retardation, craniofacial anomalies, skeletal malformations, and mottled cutaneous pigmentation. The LMNA gene encoding two nuclear envelope proteins (lamins A and C [lamin A/C]) maps to chromosome 1q21 and has been associated with five distinct pathologies, including Dunnigan-type familial partial lipodystrophy, a condition that is characterized by subcutaneous fat loss and is invariably associated with insulin resistance and diabetes. Since patients with MAD frequently have partial lipodystrophy and insulin resistance, we hypothesized that the disease may be caused by mutations in the LMNA gene. We analyzed five consanguineous Italian families and demonstrated linkage of MAD to chromosome 1q21, by use of homozygosity mapping. We then sequenced the LMNA gene and identified a homozygous missense mutation (R527H) that was shared by all affected patients. Patient skin fibroblasts showed nuclei that presented abnormal lamin A/C distribution and a dysmorphic envelope, thus demonstrating the pathogenic effect of the R527H LMNA mutation.


PLOS ONE | 2011

The IL23R R381Q Gene Variant Protects against Immune-Mediated Diseases by Impairing IL-23-Induced Th17 Effector Response in Humans

Paola Di Meglio; Antonella Di Cesare; Ute Laggner; Chung-Ching Chu; Luca Napolitano; Federica Villanova; Isabella Tosi; Francesca Capon; Richard C. Trembath; Ketty Peris; Frank O. Nestle

IL-23 and Th17 cells are key players in tissue immunosurveillance and are implicated in human immune-mediated diseases. Genome-wide association studies have shown that the IL23R R381Q gene variant protects against psoriasis, Crohns disease and ankylosing spondylitis. We investigated the immunological consequences of the protective IL23R R381Q gene variant in healthy donors. The IL23R R381Q gene variant had no major effect on Th17 cell differentiation as the frequency of circulating Th17 cells was similar in carriers of the IL23R protective (A) and common (G) allele. Accordingly, Th17 cells generated from A and G donors produced similar amounts of Th17 cytokines. However, IL-23-mediated Th17 cell effector function was impaired, as Th17 cells from A allele carriers had significantly reduced IL-23-induced IL-17A production and STAT3 phosphorylation compared to G allele carriers. Our functional analysis of a human disease-associated gene variant demonstrates that IL23R R381Q exerts its protective effects through selective attenuation of IL-23-induced Th17 cell effector function without interfering with Th17 differentiation, and highlights its importance in the protection against IL-23-induced tissue pathologies.


Human Molecular Genetics | 2008

Identification of ZNF313 / RNF114 as a novel psoriasis susceptibility gene

Francesca Capon; Marie José Bijlmakers; Natalie Wolf; Maria Quaranta; Ulrike Hüffmeier; Michael D. Allen; Kirsten Timms; Victor Abkevich; Alexander Gutin; Rhodri Ll Smith; Richard B. Warren; Helen S. Young; Jane Worthington; D Burden; C.E.M. Griffiths; Adrian Hayday; Frank O. Nestle; André Reis; Jerry S. Lanchbury; Jonathan Barker; Richard C. Trembath

Psoriasis is an immune-mediated skin disorder that is inherited as a multifactorial trait. Linkage studies have clearly identified a primary disease susceptibility locus lying within the major histocompatibility complex (MHC), but have generated conflicting results for other genomic regions. To overcome this difficulty, we have carried out a genome-wide association scan, where we analyzed more than 408,000 SNPs in an initial sample of 318 cases and 288 controls. Outside of the MHC, we observed a single cluster of disease-associated markers, spanning 47 kb on chromosome 20q13. The analysis of two replication data sets confirmed this association, with SNP rs495337 yielding a combined P-value of 1.4 x 10(-8) in an overall sample of 2679 cases and 2215 controls. Rs495337 maps to the SPATA2 transcript and is in absolute linkage disequilibrium with five SNPs lying in the adjacent ZNF313 gene (also known as RNF114). Real-time PCR experiments showed that, unlike SPATA2, ZNF313 is abundantly expressed in skin, T-lymphocytes and dendritic cells. Furthermore, an analysis of the expression data available from the Genevar database indicated that rs495337 is associated with increased ZNF313 transcripts levels (P = 0.003), suggesting that the disease susceptibility allele may be a ZNF313 regulatory variant tagged by rs495337. Homology searches indicated that ZNF313 is a paralogue of TRAC-1, an ubiquitin ligase regulating T-cell activation. We performed cell-free assays and confirmed that like TRAC-1, ZNF313 binds ubiquitin via an ubiquitin-interaction motif (UIM). These findings collectively identify a novel psoriasis susceptibility gene, with a putative role in the regulation of immune responses.


Nature | 2013

Negligible impact of rare autoimmune-locus coding-region variants on missing heritability

Karen A. Hunt; Vanisha Mistry; Nicholas A. Bockett; Tariq Ahmad; Maria Ban; Jonathan Barker; Jeffrey C. Barrett; Hannah Blackburn; Oliver J. Brand; Oliver Burren; Francesca Capon; Alastair Compston; Stephen C. L. Gough; Luke Jostins; Yong Kong; James C. Lee; Monkol Lek; Daniel G. MacArthur; John C. Mansfield; Christopher G. Mathew; Charles A. Mein; Muddassar M. Mirza; Sarah Nutland; Suna Onengut-Gumuscu; Efterpi Papouli; Miles Parkes; Stephen S. Rich; Steven Sawcer; Jack Satsangi; Matthew J. Simmonds

Genome-wide association studies (GWAS) have identified common variants of modest-effect size at hundreds of loci for common autoimmune diseases; however, a substantial fraction of heritability remains unexplained, to which rare variants may contribute. To discover rare variants and test them for association with a phenotype, most studies re-sequence a small initial sample size and then genotype the discovered variants in a larger sample set. This approach fails to analyse a large fraction of the rare variants present in the entire sample set. Here we perform simultaneous amplicon-sequencing-based variant discovery and genotyping for coding exons of 25 GWAS risk genes in 41,911 UK residents of white European origin, comprising 24,892 subjects with six autoimmune disease phenotypes and 17,019 controls, and show that rare coding-region variants at known loci have a negligible role in common autoimmune disease susceptibility. These results do not support the rare-variant synthetic genome-wide-association hypothesis (in which unobserved rare causal variants lead to association detected at common tag variants). Many known autoimmune disease risk loci contain multiple, independently associated, common and low-frequency variants, and so genes at these loci are a priori stronger candidates for harbouring rare coding-region variants than other genes. Our data indicate that the missing heritability for common autoimmune diseases may not be attributable to the rare coding-region variant portion of the allelic spectrum, but perhaps, as others have proposed, may be a result of many common-variant loci of weak effect.


American Journal of Human Genetics | 2002

Family-based analysis using a dense single-nucleotide polymorphism-based map defines genetic variation at PSORS1, the major psoriasis-susceptibility locus

Colin D. Veal; Francesca Capon; Michael H. Allen; Emma K. Heath; J Evans; Andrew J. I. Jones; Shanta Patel; D Burden; D Tillman; Jonathan Barker; Richard C. Trembath

Psoriasis is a common skin disorder of multifactorial origin. Genomewide scans for disease susceptibility have repeatedly demonstrated the existence of a major locus, PSORS1 (psoriasis susceptibility 1), contained within the major histocompatibility complex (MHC), on chromosome 6p21. Subsequent refinement studies have highlighted linkage disequilibrium (LD) with psoriasis, along a 150-kb segment that includes at least three candidate genes (encoding human leukocyte antigen-C [HLA-C], alpha-helix-coiled-coil-rod homologue, and corneodesmosin), each of which has been shown to harbor disease-associated alleles. However, the boundaries of the minimal PSORS1 region remain poorly defined. Moreover, interpretations of allelic association with psoriasis are compounded by limited insight of LD conservation within MHC class I interval. To address these issues, we have pursued a high-resolution genetic characterization of the PSORS1 locus. We resequenced genomic segments along a 220-kb region at chromosome 6p21 and identified a total of 119 high-frequency SNPs. Using 59 SNPs (18 coding and 41 noncoding SNPs) whose position was representative of the overall marker distribution, we genotyped a data set of 171 independently ascertained parent-affected offspring trios. Family-based association analysis of this cohort highlighted two SNPs (n.7 and n.9) respectively lying 7 and 4 kb proximal to HLA-C. These markers generated highly significant evidence of disease association (P<10-9), several orders of magnitude greater than the observed significance displayed by any other SNP that has previously been associated with disease susceptibility. This observation was replicated in a Gujarati Indian case/control data set. Haplotype-based analysis detected overtransmission of a cluster of chromosomes, which probably originated by ancestral mutation of a common disease-bearing haplotype. The only markers exclusive to the overtransmitted chromosomes are SNPs n.7 and n.9, which define a 10-kb PSORS1 core risk haplotype. These data demonstrate the power of SNP haplotype-based association analyses and provide high-resolution dissection of genetic variation across the PSORS1 interval, the major susceptibility locus for psoriasis.


Journal of Medical Genetics | 2007

Psoriasis is associated with pleiotropic susceptibility loci identified in type II diabetes and Crohn disease

N Wolf; Maria Quaranta; Natalie J. Prescott; Michael A Allen; Rhodri Ll Smith; A.D. Burden; Jane Worthington; C.E.M. Griffiths; Christopher G. Mathew; Jonathan Barker; Francesca Capon; Richard C. Trembath

Background: Psoriasis is an immune-mediated skin disorder that is inherited as a multifactorial trait. Linkage analyses have clearly mapped a primary disease susceptibility locus to the major histocompatibility complex (MHC) region on chromosome 6p21. More recently, whole-genome association studies have identified two non-MHC disease genes (IL12B and IL23R), both of which also confer susceptibility to Crohn disease (CD). Objective and methods: To ascertain the genetic overlap between these two inflammatory conditions further, we investigated 15 CD-associated loci in a psoriasis case–control dataset. Results: The analysis of 1256 patients and 2938 unrelated controls found significant associations for loci mapping to chromosomes 1q24 (rs12035082, p = 0.009), 6p22 (rs6908425, p = 0.00015) and 21q22 (rs2836754, p = 0.0003). Notably, the marker showing the strongest phenotypic effect (rs6908425) maps to CDKAL1, a gene also associated with type 2 diabetes. Conclusions: These results substantiate emerging evidence for a pleiotropic role for s genes that contribute to the pathogenesis of immune-mediated disorders.


Journal of Investigative Dermatology | 2011

Meta-Analysis Confirms the LCE3C_LCE3B Deletion as a Risk Factor for Psoriasis in Several Ethnic Groups and Finds Interaction with HLA-Cw6

Eva Riveira-Munoz; Su Min He; Geòrgia Escaramís; Philip E. Stuart; Ulrike Hüffmeier; Catherine Lee; Brian Kirby; Akira Oka; Emiliano Giardina; Wilson Liao; Judith G.M. Bergboer; Kati Kainu; Rafael de Cid; Batmunkh Munkhbat; Patrick L.J.M. Zeeuwen; John A.L. Armour; Annie Poon; Tomotaka Mabuchi; Akira Ozawa; Agnieszka Zawirska; A. David Burden; Jonathan Barker; Francesca Capon; Heiko Traupe; Liang Dan Sun; Yong Cui; Xian Yong Yin; Gang Chen; Henry W. Lim; Rajan P. Nair

A multicenter meta-analysis including data from 9,389 psoriasis patients and 9,477 control subjects was performed to investigate the contribution of the deletion of genes LCE3C and LCE3B, involved in skin barrier defense, to psoriasis susceptibility in different populations. The study confirms that the deletion of LCE3C and LCE3B is a common genetic factor for susceptibility to psoriasis in the European populations (OR(Overall) = 1.21 (1.15-1.27)), and for the first time directly demonstrates the deletions association with psoriasis in the Chinese (OR = 1.27 (1.16-1.34)) and Mongolian (OR = 2.08 (1.44-2.99)) populations. The analysis of the HLA-Cw6 locus showed significant differences in the epistatic interaction with the LCE3C and LCE3B deletion in at least some European populations, indicating epistatic effects between these two major genetic contributors to psoriasis. The study highlights the value of examining genetic risk factors in multiple populations to identify genetic interactions, and indicates the need of further studies to understand the interaction of the skin barrier and the immune system in susceptibility to psoriasis.


Human Genetics | 2002

Evidence for differential S100 gene over-expression in psoriatic patients from genetically heterogeneous pedigrees.

Sabrina Semprini; Francesca Capon; Alessandra Tacconelli; Emiliano Giardina; Angela Orecchia; Rita Mingarelli; Tommaso Gobello; Giovanna Zambruno; Annalisa Botta; Giuseppe Fabrizi; Giuseppe Novelli

Abstract. Psoriasis is an inflammatory skin disorder characterised by keratinocyte hyper-proliferation and altered differentiation. To date, linkage analyses have identified at least seven distinct disease susceptibility regions (PSORS1–7). The PSORS4 locus was mapped by our group to chromosome 1q21, within the Epidermal Differentiation Complex. This cluster contains 13 genes encoding S100 calcium-binding proteins, some of which (S100A7, S100A8 and S100A9) are known to be up-regulated in individual patient keratinocytes. In this study, we analysed S100 gene expression in psoriatic individuals from families characterised by linkage studies. We first selected individuals from two large pedigrees, one of which was linked to the 1q21 locus, whereas the other was unlinked to that region. We studied the expression of 12 S100 genes, by semi-quantitative RT-PCR and Northern blot. These analyses demonstrated up-regulation of S100A8, S100A9 and, to a lesser extent, S100A7 and S100A12, only in the 1q21 linked family. We subsequently analysed S100A7, S100A8, S100A9 and S100A12 in three additional samples and were able to confirm S100A8/S100A9-specific over-expression in 1q-linked pedigrees. Thus, our data provide preliminary evidence for a locus-specific molecular mechanism underlying psoriasis susceptibility.


Nature Communications | 2015

Enhanced meta-analysis and replication studies identify five new psoriasis susceptibility loci.

Lam C. Tsoi; Sarah L. Spain; Eva Ellinghaus; Philip E. Stuart; Francesca Capon; Jo Knight; Trilokraj Tejasvi; Hyun Min Kang; Michael H. Allen; Sylviane Lambert; Stefan W. Stoll; Stephan Weidinger; Johann E. Gudjonsson; Sulev Kõks; Külli Kingo; Tonu Esko; Sayantan Das; Andres Metspalu; Michael Weichenthal; Charlotta Enerbäck; Gerald G. Krueger; John J. Voorhees; Vinod Chandran; Cheryl F. Rosen; Proton Rahman; Dafna D. Gladman; André Reis; Rajan P. Nair; Andre Franke; Jonathan Barker

Psoriasis is a chronic autoimmune disease with complex genetic architecture. Previous genomewide association studies (GWAS) and a recent meta-analysis using Immunochip data have uncovered 36 susceptibility loci. Here, we extend our previous meta-analysis of European ancestry by refined genotype calling and imputation and by the addition of 5,033 cases and 5,707 controls. The combined analysis, consisting of over 15,000 cases and 27,000 controls, identifies five new psoriasis susceptibility loci at genomewide significance (p < 5 × 10−8). The newly identified signals include two that reside in intergenic regions (1q31.1 and 5p13.1) and three residing near PLCL2 (3p24.3), NFKBIZ (3q12.3), and CAMK2G (10q22.2). We further demonstrate that NFKBIZ is a TRAF3IP2–dependent target of IL-17 signaling in human skin keratinocytes, thereby functionally linking two strong candidate genes. These results further integrate the genetics and immunology of psoriasis, suggesting new avenues for functional analysis and improved therapies.

Collaboration


Dive into the Francesca Capon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giuseppe Novelli

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Catherine Smith

Guy's and St Thomas' NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Bruno Dallapiccola

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

D Burden

University of Glasgow

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C.E.M. Griffiths

Manchester Academic Health Science Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge