Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesca Damiola is active.

Publication


Featured researches published by Francesca Damiola.


Human Molecular Genetics | 2015

FANCM c.5791C>T nonsense mutation (rs144567652) induces exon skipping, affects DNA repair activity and is a familial breast cancer risk factor

Paolo Peterlongo; Irene Catucci; Mara Colombo; Laura Caleca; Eliseos J. Mucaki; Massimo Bogliolo; Maria Marín; Francesca Damiola; Loris Bernard; Valeria Pensotti; Sara Volorio; Valentina Dall'Olio; Alfons Meindl; Claus R. Bartram; Christian Sutter; Harald Surowy; Valérie Sornin; Marie Gabrielle Dondon; Séverine Eon-Marchais; Dominique Stoppa-Lyonnet; Nadine Andrieu; Olga M. Sinilnikova; Gillian Mitchell; Paul A. James; Ella R. Thompson; Marina Marchetti; Cristina Verzeroli; Carmen Tartari; Gabriele Lorenzo Capone; Anna Laura Putignano

Numerous genetic factors that influence breast cancer risk are known. However, approximately two-thirds of the overall familial risk remain unexplained. To determine whether some of the missing heritability is due to rare variants conferring high to moderate risk, we tested for an association between the c.5791C>T nonsense mutation (p.Arg1931*; rs144567652) in exon 22 of FANCM gene and breast cancer. An analysis of genotyping data from 8635 familial breast cancer cases and 6625 controls from different countries yielded an association between the c.5791C>T mutation and breast cancer risk [odds ratio (OR) = 3.93 (95% confidence interval (CI) = 1.28-12.11; P = 0.017)]. Moreover, we performed two meta-analyses of studies from countries with carriers in both cases and controls and of all available data. These analyses showed breast cancer associations with OR = 3.67 (95% CI = 1.04-12.87; P = 0.043) and OR = 3.33 (95% CI = 1.09-13.62; P = 0.032), respectively. Based on information theory-based prediction, we established that the mutation caused an out-of-frame deletion of exon 22, due to the creation of a binding site for the pre-mRNA processing protein hnRNP A1. Furthermore, genetic complementation analyses showed that the mutation influenced the DNA repair activity of the FANCM protein. In summary, we provide evidence for the first time showing that the common p.Arg1931* loss-of-function variant in FANCM is a risk factor for familial breast cancer.


Breast Cancer Research | 2013

COMPLEXO: identifying the missing heritability of breast cancer via next generation collaboration

Melissa C. Southey; Daniel J. Park; Tú Nguyen-Dumont; Ian G. Campbell; Ella R. Thompson; Alison H. Trainer; Georgia Chenevix-Trench; Jacques Simard; Martine Dumont; Penny Soucy; Mads Thomassen; Lars Jønson; Inge Søkilde Pedersen; Thomas V O Hansen; Heli Nevanlinna; Sofia Khan; Olga M. Sinilnikova; Sylvie Mazoyer; Fabienne Lesueur; Francesca Damiola; Rita K. Schmutzler; Alfons Meindl; Eric Hahnen; Michael R. Dufault; T. L. Chris Chan; Ava Kwong; Rosa B. Barkardottir; Paolo Radice; Paolo Peterlongo; Peter Devilee

Linkage analysis, positional cloning, candidate gene mutation scanning and genome-wide association study approaches have all contributed significantly to our understanding of the underlying genetic architecture of breast cancer. Taken together, these approaches have identified genetic variation that explains approximately 30% of the overall familial risk of breast cancer, implying that more, and likely rarer, genetic susceptibility alleles remain to be discovered.


BMC Bioinformatics | 2004

Identitag, a relational database for SAGE tag identification and interspecies comparison of SAGE libraries

Céline Keime; Francesca Damiola; Dominique Mouchiroud; Laurent Duret; Olivier Gandrillon

BackgroundSerial Analysis of Gene Expression (SAGE) is a method of large-scale gene expression analysis that has the potential to generate the full list of mRNAs present within a cell population at a given time and their frequency. An essential step in SAGE library analysis is the unambiguous assignment of each 14 bp tag to the transcript from which it was derived. This process, called tag-to-gene mapping, represents a step that has to be improved in the analysis of SAGE libraries. Indeed, the existing web sites providing correspondence between tags and transcripts do not concern all species for which numerous EST and cDNA have already been sequenced.ResultsThis is the reason why we designed and implemented a freely available tool called Identitag for tag identification that can be used in any species for which transcript sequences are available. Identitag is based on a relational database structure in order to allow rapid and easy storage and updating of data and, most importantly, in order to be able to precisely define identification parameters. This structure can be seen like three interconnected modules : the first one stores virtual tags extracted from a given list of transcript sequences, the second stores experimental tags observed in SAGE experiments, and the third allows the annotation of the transcript sequences used for virtual tag extraction. It therefore connects an observed tag to a virtual tag and to the sequence it comes from, and then to its functional annotation when available. Databases made from different species can be connected according to orthology relationship thus allowing the comparison of SAGE libraries between species. We successfully used Identitag to identify tags from our chicken SAGE libraries and for chicken to human SAGE tags interspecies comparison. Identitag sources are freely available on http://pbil.univ-lyon1.fr/software/identitag/ web site.ConclusionsIdentitag is a flexible and powerful tool for tag identification in any single species and for interspecies comparison of SAGE libraries. It opens the way to comparative transcriptomic analysis, an emerging branch of biology.


Oncogene | 2003

The MEK-1/ERKs signalling pathway is differentially involved in the self-renewal of early and late avian erythroid progenitor cells

Sébastien Dazy; Francesca Damiola; Nicolas Parisey; Hartmut Beug; Olivier Gandrillon

Making decisions between self-renewal and differentiation is a central ability of stem cells. Elucidation of molecular networks governing this decision is therefore of prime importance. A model of choice to explore this question is represented by chicken erythroid progenitors, in which self-renewal versus differentiation as well as progenitor maturation are regulated by external factor combinations. We used this system to study whether similar or different signalling pathways were involved in the self-renewal of early, immature or more mature erythroid progenitors. We show that a transforming growth factor (TGF)-α-activated Ras/MEK-1/ERK1/2 pathway is strictly required for immature self-renewing cells but becomes fully dispensable when those cells are induced to differentiate. Consequently, pharmacological inhibition of this pathway led to spontaneous differentiation, only dependent on the presence of survival signals. Conversely, ectopic expression of a constitutive form of MEK-1 stimulates renewal and arrests differentiation process. Finally, we demonstrate that the ERK/MAPK signalling pathway is required in early but not in late primary erythroid progenitors, which can be turned into each other by different growth factor combinations specifically driving their renewal. To the best of our knowledge, this is the first description of a central role of ERK/MAPK signalling in regulating progenitor plasticity in the same cell type under different environmental conditions.


Oncogene | 2004

Global transcription analysis of immature avian erythrocytic progenitors: from self-renewal to differentiation.

Francesca Damiola; Céline Keime; Sandrine Gonin-Giraud; Sébastien Dazy; Olivier Gandrillon

The molecular mechanisms regulating the cell fate decision between self-renewal and differentiation/apoptosis in stem and progenitor cells are poorly understood. Here, we report the first comprehensive identification of genes potentially involved in the switch from self-renewal toward differentiation of primary, non-immortalized erythroid avian progenitor cells (T2EC cells). We used the Serial Analysis of Gene Expression (SAGE) technique in order to identify and quantify the genome fraction functionally active in a self-renewing versus a differentiating cell population. We generated two SAGE libraries and sequenced a total of 37 589 tags, thereby obtaining the first transcriptional profile characterization of a chicken cell. Tag identification was performed using a new relational database (Identitag) developed in the laboratory, which allowed a highly satisfactory level of identification. Among 123 differentially expressed genes, 11 were investigated further and for nine of them the differential expression was subsequently confirmed by real-time PCR. The comparison of tag abundance between the two libraries revealed that only a small fraction of transcripts was differentially expressed. The analysis of their functions argue against a prominent role for a master switch in T2EC cells decision-making, but are in favor of a critical role for coordinated small variations in a relatively small number of genes that can lead to essential cellular identity changes.


Cell Proliferation | 2011

Cholesterol synthesis-related enzyme oxidosqualene cyclase is required to maintain self-renewal in primary erythroid progenitors

Camila Mejia-Pous; Francesca Damiola; Olivier Gandrillon

Objectives:  Molecular mechanisms controlling cell fate decision making in self‐renewing cells are poorly understood. A previous transcriptomic study, carried out in primary avian erythroid progenitor cells (T2ECs), revealed that the gene encoding oxidosqualene cyclase (OSC/LSS), an enzyme involved in cholesterol biosynthesis, is significantly up‐regulated in self‐renewing cells. The aim of the present work is to understand whether this up‐regulation is required for self‐renewal maintenance and what are the mechanisms involved.


PLOS ONE | 2015

Common Variants at 9q22.33, 14q13.3, and ATM Loci, and Risk of Differentiated Thyroid Cancer in the French Polynesian Population

Stéphane Maillard; Francesca Damiola; Enora Clero; Maroulio Pertesi; Nivonirina Robinot; Frédérique Rachédi; Jean-Louis Boissin; Joseph Sebbag; Larrys Shan; Frédérique Bost-Bezeaud; Patrick Petitdidier; Françoise Doyon; Constance Xhaard; Carole Rubino; Hélène Blanché; Vladimir Drozdovitch; Fabienne Lesueur; Florent de Vathaire

Background French Polynesia has one of the highest incidence rates of thyroid cancer worldwide. Relationships with the atmospheric nuclear weapons tests and other environmental, biological, or behavioral factors have already been reported, but genetic susceptibility has yet to be investigated. We assessed the contribution of polymorphisms at the 9q22.33 and 14q13.3 loci identified by GWAS, and within the DNA repair gene ATM, to the risk of differentiated thyroid cancer (DTC) in 177 cases and 275 matched controls from the native population. Principal Findings For the GWAS SNP rs965513 near FOXE1, an association was found between genotypes G/A and A/A, and risk of DTC. A multiplicative effect of allele A was even noted. An excess risk was also observed in individuals carrying two long alleles of the poly-alanine tract expansion in FOXE1, while no association was observed with rs1867277 falling in the promoter region of the gene. In contrast, the GWAS SNP rs944289 (NKX2-1) did not show any significant association. Although the missense substitution D1853N (rs1801516) in ATM was rare in the population, carriers of the minor allele (A) also showed an excess risk. The relationships between these five polymorphisms and the risk of DTC were not contingent on the body surface area, body mass index, ethnicity or dietary iodine intake. However, an interaction was evidenced between the thyroid radiation dose and rs944289. Significance A clear link could not be established between the high incidence in French Polynesia and the studied polymorphisms, involved in susceptibility to DTC in other populations. Important variation in allele frequencies was observed in the Polynesian population as compared to the European populations. For FOXE1 rs965513, the direction of association and the effect size was similar to that observed in other populations, whereas for ATM rs1801516, the minor allele was associated to an increased risk in the Polynesian population and with a decreased risk in the European population.


PLOS ONE | 2015

Targeted Sequencing of the Mitochondrial Genome of Women at High Risk of Breast Cancer without Detectable Mutations in BRCA1/2

Sophie Blein; Laure Barjhoux; Genesis investigators; Francesca Damiola; Marie-Gabrielle Dondon; Séverine Eon-Marchais; Morgane Marcou; Olivier Caron; Alain Lortholary; Bruno Buecher; Philippe Vennin; Pascaline Berthet; Catherine Noguès; Christine Lasset; Marion Gauthier-Villars; Sylvie Mazoyer; Dominique Stoppa-Lyonnet; Nadine Andrieu; Gilles Thomas; Olga M. Sinilnikova; David G. Cox

Breast Cancer is a complex multifactorial disease for which high-penetrance mutations have been identified. Approaches used to date have identified genomic features explaining about 50% of breast cancer heritability. A number of low- to medium penetrance alleles (per-allele odds ratio < 1.5 and 4.0, respectively) have been identified, suggesting that the remaining heritability is likely to be explained by the cumulative effect of such alleles and/or by rare high-penetrance alleles. Relatively few studies have specifically explored the mitochondrial genome for variants potentially implicated in breast cancer risk. For these reasons, we propose an exploration of the variability of the mitochondrial genome in individuals diagnosed with breast cancer, having a positive breast cancer family history but testing negative for BRCA1/2 pathogenic mutations. We sequenced the mitochondrial genome of 436 index breast cancer cases from the GENESIS study. As expected, no pathogenic genomic pattern common to the 436 women included in our study was observed. The mitochondrial genes MT-ATP6 and MT-CYB were observed to carry the highest number of variants in the study. The proteins encoded by these genes are involved in the structure of the mitochondrial respiration chain, and variants in these genes may impact reactive oxygen species production contributing to carcinogenesis. More functional and epidemiological studies are needed to further investigate to what extent variants identified may influence familial breast cancer risk.


European Journal of Human Genetics | 2016

Mutation screening of MIR146A/B and BRCA1/2 3′-UTRs in the GENESIS study

Amandine Garcia; Monique Buisson; Francesca Damiola; Chloé Tessereau; Laure Barjhoux; Carole Verny-Pierre; Valérie Sornin; Marie-Gabrielle Dondon; Séverine Eon-Marchais; Genesis investigators; Olivier Caron; Marion Gautier-Villars; Isabelle Coupier; Bruno Buecher; Philippe Vennin; Muriel Belotti; Alain Lortholary; Paul Gesta; Catherine Dugast; Catherine Noguès; Jean-Pierre Fricker; Laurence Faivre; Dominique Stoppa-Lyonnet; Nadine Andrieu; Olga M. Sinilnikova; Sylvie Mazoyer

Although a wide number of breast cancer susceptibility alleles associated with various levels of risk have been identified to date, about 50% of the heritability is still missing. Although the major BRCA1 and BRCA2 genes are being extensively screened for truncating and missense variants in breast and/or ovarian cancer families, potential regulatory variants affecting their expression remain largely unexplored. In an attempt to identify such variants, we focused our attention on gene regulation mediated by microRNAs (miRs). We screened two genes, MIR146A and MIR146B, producing miR-146a and miR-146b-5p, respectively, that regulate BRCA1, and the 3′- untranslated regions (3′-UTRs) of BRCA1 and BRCA2 in the GENESIS French national case/control study (BRCA1- and BRCA2-negative breast cancer cases with at least one sister with breast cancer and matched controls). We identified one rare variant in MIR146A, four in MIR146B, five in BRCA1 3′-UTR and one in BRCA2 3′-UTR in 716 index cases and 619 controls. Among these 11 rare variants, 7 were identified each in 1 index case. None of the three relevant MIR146A/MIR146B variants affected the pre-miR sequences. The potential causality of the four relevant BRCA1/BRCA2 3′-UTRs variants was evaluated with luciferase reporter assays and co-segregation studies, as well as with bioinformatics analyses to predict miRs-binding sites, RNA secondary structures and RNA accessibility. This is the first study to report the screening of miR genes and of BRCA2 3′-UTR in a large series of familial breast cancer cases. None of the variant identified in this study gave convincing evidence of potential pathogenicity.


Oncotarget | 2018

Full in-frame exon 3 skipping of BRCA2 confers high risk of breast and/or ovarian cancer

Sandrine M. Caputo; Mélanie Léoné; Francesca Damiola; Åsa Ehlén; Aura Carreira; Pascaline Gaidrat; Alexandra Martins; Rita D. Brandão; Ana Peixoto; Ana Vega; Claude Houdayer; Capucine Delnatte; Myriam Bronner; Danièle Muller; Laurent Castera; Marine Guillaud-Bataille; Inge Søkilde; Nancy Uhrhammer; Sophie Demontety; Hélène Tubeuf; Gaïa Castelain; Uffe Birk Jensen; Ambre Petitalot; Sophie Krieger; Cédrick Lefol; Virginie Moncoutier; Nadia Boutry-Kryza; Henriette Roed Nielsen; Olga Silninilkova; Dominique Stoppa-Lyonnet

Germline pathogenic variants in the BRCA2 gene are associated with a cumulative high risk of breast/ovarian cancer. Several BRCA2 variants result in complete loss of the exon-3 at the transcript level. The pathogenicity of these variants and the functional impact of loss of exon 3 have yet to be established. As a collaboration of the COVAR clinical trial group (France), and the ENIGMA consortium for investigating breast cancer gene variants, this study evaluated 8 BRCA2 variants resulting in complete deletion of exon 3. Clinical information for 39 families was gathered from Portugal, France, Denmark and Sweden. Multifactorial likelihood analyses were conducted using information from 293 patients, for 7 out of the 8 variants (including 6 intronic). For all variants combined the likelihood ratio in favor of causality was 4.39*1025. These results provide convincing evidence for the pathogenicity of all examined variants that lead to a total exon 3 skipping, and suggest that other variants that result in complete loss of exon 3 at the molecular level could be associated with a high risk of cancer comparable to that associated with classical pathogenic variants in BRCA1 or BRCA2 gene. In addition, our functional study shows, for the first time, that deletion of exon 3 impairs the ability of cells to survive upon Mitomycin-C treatment, supporting lack of function for the altered BRCA2 protein in these cells. Finally, this study demonstrates that any variant leading to expression of only BRCA2 delta-exon 3 will be associated with an increased risk of breast and ovarian cancer.

Collaboration


Dive into the Francesca Damiola's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Capucine Delnatte

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge