Francesca Ducci
King's College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francesca Ducci.
Molecular Psychiatry | 2008
Francesca Ducci; M-A Enoch; Chloe Hodgkinson; Ke Xu; Mario Catena; Robert W. Robin; David Goldman
Women who have experienced childhood sexual abuse (CSA) have an increased risk of alcoholism and antisocial personality disorder (ASPD). Among male subjects, a functional polymorphism (MAOA-LPR, monoamine oxidase A linked polymorphic region) in the promoter region of the monoamine oxidase A gene (MAOA) appears to moderate the effect of childhood maltreatment on antisocial behavior. Our aim was to test whether MAOA-LPR influences the impact of CSA on alcoholism and ASPD in a sample of 291 women, 50% of whom have experienced CSA; we also tested whether haplotypes covering the region where both MAOA and monoamine oxidase B (MAOB) genes are located predict risk of alcoholism and ASPD better than the MAOA-LPR locus alone. Participants included 168 alcoholics (39 with ASPD (antisocial alcoholics) and 123 controls (no alcoholics, no ASPD). Antisocial behavior was also modeled as a continuous trait: ASPD symptoms count. The MAOA-LPR low activity allele was associated with alcoholism (P=0.005), particularly antisocial alcoholism (P=0.00009), only among sexually abused subjects. Sexually abused women who were homozygous for the low activity allele had higher rates of alcoholism and ASPD, and more ASPD symptoms, than abused women homozygous for the high activity allele. Heterozygous women displayed an intermediate risk pattern. In contrast, there was no relationship between alcoholism/antisocial behavior and MAOA-LPR genotype among non-abused women. The MAOA-LPR low activity allele was found on three different haplotypes. The most abundant MAOA haplotype containing the MAOA-LPR low activity allele was found in excess among alcoholics (P=0.008) and antisocial alcoholics (P=0.001). Finally, a MAOB haplotype, which we termed haplotype C, was significantly associated with alcoholism (P=0.006), and to a lesser extent with antisocial alcoholism (P=0.03). In conclusions, MAOA seems to moderate the impact of childhood trauma on adult psychopathology in female subjects in the same way as previously shown among male subjects. The MAOA-LPR low activity allele appears to confer increased vulnerability to the adverse psychosocial consequences of CSA. Haplotype-based analysis of the MAOA gene appeared to strengthen the association, as compared to the MAOA-LPR locus alone. A MAOB haplotype was associated with alcoholism independently from ASPD.
Neuropsychopharmacology | 2008
Rickard L. Sjöberg; Francesca Ducci; Christina S. Barr; Timothy K. Newman; Liliana Dell'Osso; Matti Virkkunen; David Goldman
A functional VNTR polymorphism in the promoter of the monoamine oxidase A gene (MAOA-LPR) has previously been shown to be an important predictor of antisocial behavior in men. Testosterone analogues are known to interact with the MAOA promoter in vitro to influence gene transcription as well as in vivo to influence CSF levels of the MAO metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG) in human males. We examined the possible joint effects of testosterone (measured in CSF) and MAOA-LPR genotype on antisocial personality disorder and scores on the Brown–Goodwin Aggression scale in 95 unrelated male criminal alcoholics and 45 controls. The results confirm that MAOA genotype and CSF testosterone interact to predict antisocial behaviors. The MAOA/testosterone interaction also predicted low levels of CSF MHPG, which tentatively suggests the possibility that the interaction may be mediated by a direct effect on gene transcription. If replicated these findings offer plausible explanations for previous inconsistencies in studies of the relationship between testosterone and male human aggression, as well as for how MAOA genotype may influence aggressive behavior in human males.
Psychiatric Clinics of North America | 2012
Francesca Ducci; David Goldman
Addictions are common, chronic, and relapsing diseases that develop through a multistep process. The impact of addictions on morbidity and mortality is high worldwide. Twin studies have shown that the heritability of addictions ranges from 0.39 (hallucinogens) to 0.72 (cocaine). Twin studies indicate that genes influence each stage from initiation to addiction, although the genetic determinants may differ. Addictions are by definition the result of gene × environment interaction. These disorders, which are in part volitional, in part inborn, and in part determined by environmental experience, pose the full range of medical, genetic, policy, and moral challenges. Gene discovery is being facilitated by a variety of powerful approaches, but is in its infancy. It is not surprising that the genes discovered so far act in a variety of ways: via altered metabolism of drug (the alcohol and nicotine metabolic gene variants), via altered function of a drug receptor (the nicotinic receptor, which may alter affinity for nicotine but as discussed may also alter circuitry of reward), and via general mechanisms of addiction (genes such as monoamine oxidase A and the serotonin transporter that modulate stress response, emotion, and behavioral control). Addiction medicine today benefits from genetic studies that buttress the case for a neurobiologic origin of addictive behavior, and some general information on familially transmitted propensity that can be used to guide prevention. A few well-validated, specific predictors such as OPRM1, ADH1B, ALDH2, CHRNA5, and CYP26 have been identified and can provide some specific guidance, for example, to understand alcohol-related flushing and upper GI cancer risk (ADH1B and AKLDH2), variation in nicotine metabolism (CYP26), and, potentially, naltrexone treatment response (OPRM1). However, the genetic predictors available are few in number and account for only a small portion of the genetic variance in liability, and have not been integrated into clinical nosology or care.
Molecular Psychiatry | 2006
Francesca Ducci; T K Newman; S Funt; G L Brown; Matti Virkkunen; David Goldman
Variation in brain monoaminergic activity is heritable and modulates risk of alcoholism and other addictions, as well as food intake and energy expenditure. Monoamine oxidase A deaminates the monoamine neurotransmitters serotonin, dopamine (DA), and noradrenalin. The monoamine oxidase A (MAOA) gene (Xp11.5) contains a length polymorphism in its promoter region (MAOA-LPR) that putatively affects transcriptional efficiency. Our goals were to test (1) whether MAOA-LPR contributes to interindividual variation in monoamine activity, assessed using levels of cerebrospinal fluid (CSF) monoamine metabolites; and (2) whether MAOA-LPR genotype influences alcoholism and/or body mass index (BMI). Male, unrelated criminal alcoholics (N=278) and controls (N=227) were collected from a homogeneous Finnish source population. CSF concentration of 5-hydroxyindoleacetic acid (5-HIAA), homovanillic acid (HVA), and 3-methoxy-4-hydroxyphenylglycol (MHPG) were available from 208 participants. Single allele, hemizygous genotypes were grouped according to inferred effect of the MAOA alleles on transcriptional activity. MAOA-LPR genotypes had a significant effect on CSF HVA concentration (P=0.01) but explained only 3% of the total variance. There was a detectable but nonsignificant genotype effect on 5-HIAA and no effects on MHPG. Specifically, the genotype conferring high MAOA activity was associated with lower HVA levels in both alcoholics and controls, a finding that persisted after accounting for the potential confounds of alcoholism, BMI, height, and smoking. MAOA-LPR genotype predicted BMI (P<0.005), with the high-activity genotype being associated with lower BMI. MAOA-LPR genotypes were not associated with alcoholism or related psychiatric phenotypes in this data set. Our results suggest that MAOA-LPR allelic variation modulates DA turnover in the CNS, but does so in a manner contrary to our prior expectation that alleles conferring high activity would predict higher HVA levels in CSF. Our results are consistent with an emerging literature that suggests greater complexity in how variation in MAOA expression alters monoaminergic function. Finally, our work suggests that MAOA may be involved in the regulation of BMI. Independent samples are necessary to confirm this preliminary finding.
Biological Psychiatry | 2011
Francesca Ducci; Marika Kaakinen; Anneli Pouta; Anna-Liisa Hartikainen; Juha Veijola; Matti Isohanni; Pimphen Charoen; Lachlan Coin; Clive J. Hoggart; Jesper Ekelund; Leena Peltonen; Nelson B. Freimer; Paul Elliott; Gunter Schumann; Marjo-Riitta Järvelin
BACKGROUND CHRNA5-CHRNA3-CHRNB4 and TTC12-ANKK1-DRD2 gene-clusters influence smoking behavior. Our aim was to test developmental changes in their effects as well as the interplays between them and with nongenetic factors. METHODS Participants included 4762 subjects from a general population-based, prospective Northern Finland 1966 Birth Cohort (NFBC 1966). Smoking behavior was collected at age 14 and 31 years. Information on maternal smoking, socioeconomic status, and novelty seeking were also collected. Structural equation modeling was used to construct an integrative etiologic model including genetic and nongenetic factors. RESULTS Several single nucleotide polymorphisms in both gene-clusters were significantly associated with smoking. The most significant were in CHRNA3 (rs1051730, p = 1.1 × 10(-5)) and in TTC12 (rs10502172, p = 9.1 × 10(-6)). CHRNA3-rs1051730[A] was more common among heavy/regular smokers than nonsmokers with similar effect-sizes at age 14 years (odds ratio [95% CI]: 1.27 [1.06-1.52]) and 31 years (1.28 [1.13-1.44]). TTC12-rs10502172[G] was more common among smokers than nonsmokers with stronger association at 14 years (1.33 [1.11-1.60]) than 31 years (1.14 [1.02-1.28]). In adolescence, carriers of three-four risk alleles at either CHRNA3-rs1051730 or TTC12-rs10502172 had almost threefold odds of smoking regularly than subjects with no risk alleles. TTC12-rs10502172 effect on smoking in adulthood was mediated by its effect on smoking in adolescence and via novelty seeking. Effect of CHRNA3-rs1051730 on smoking in adulthood was direct. CONCLUSIONS TTC12-ANKK1-DRD2s seemed to influence smoking behavior mainly in adolescence, and its effect is partially mediated by personality characteristics promoting drug-seeking behavior. In contrast, CHRNA5-CHRNA3-CHRNB4 is involved in the transition toward heavy smoking in mid-adulthood and in smoking persistence. Factors related to familial and social disadvantages were strong independent predictors of smoking.
American Journal of Psychiatry | 2009
Francesca Ducci; Alec Roy; Pei Hong Shen; Qiaoping Yuan; Nicole P. Yuan; Colin A. Hodgkinson; Lynn R. Goldman; David Goldman
OBJECTIVE Genetic variation influences differential vulnerability to addiction within populations. However, it remains unclear whether differences in frequencies of vulnerability alleles contribute to disparities between populations and to what extent ancestry correlates with differential exposure to environmental risk factors, including poverty and trauma. METHOD The authors used 186 ancestry-informative markers to measure African ancestry in 407 addicts and 457 comparison subjects self-identified as African Americans. The reference group was 1,051 individuals from the Human Genome Diversity Cell Line Panel, which includes 51 diverse populations representing most worldwide genetic diversity. RESULTS African Americans varied in degrees of African, European, Middle Eastern, and Central Asian genetic heritage. The overall level of African ancestry was actually smaller among cocaine, opiate, and alcohol addicts (proportion=0.76-0.78) than nonaddicted African American comparison subjects (proportion=0.81). African ancestry was associated with living in impoverished neighborhoods, a factor previously associated with risk. There was no association between African ancestry and exposure to childhood abuse or neglect, a factor that strongly predicted all types of addictions. CONCLUSIONS These results suggest that African genetic heritage does not increase the likelihood of genetic risk for addictions. They highlight the complex interrelation between genetic ancestry and social, economic, and environmental conditions and the strong relation of those factors to addiction. Studies of epidemiological samples characterized for genetic ancestry and social, psychological, demographic, economic, cultural, and historical factors are needed to better disentangle the effects of genetic and environmental factors underlying interpopulation differences in vulnerability to addiction and other health disparities.
Alcoholism: Clinical and Experimental Research | 2009
Roope Tikkanen; Rickard L. Sjöberg; Francesca Ducci; David Goldman; Matti Holi; Jari Tiihonen; Matti Virkkunen
BACKGROUND Environmental factors appear to interact with a functional polymorphism (MAOA-LPR) in the promoter region of the monoamine oxidase A gene (MAOA) in determining some forms of antisocial behavior. However, how MAOA-LPR modulates the effects of other factors such as alcohol consumption related to antisocial behavior is not completely understood. METHODS This study examines the conjunct effect of MAOA-LPR, alcohol consumption, and aging on the risk for violent behavior. Recidivism in severe impulsive violent behavior was assessed after 7 to 15 years in a sample of 174 Finnish alcoholic offenders, the majority of whom exhibited antisocial or borderline personality disorder or both, and featured impulsive temperament traits. RESULTS The risk for committing new acts of violence increased by 2.3% for each kilogram of increase in yearly mean alcohol consumption (p = 0.004) and decreased by 7.3% for every year among offenders carrying the high activity MAOA genotype. In contrast, alcohol consumption and aging failed to affect violent behavior in the low activity MAOA genotyped offenders. MAOA-LPR showed no main effect on the risk for recidivistic violence. CONCLUSIONS Violent offenders carrying the high activity MAOA genotype differ in several ways from carriers with the low activity MAOA risk allele previously associated with antisocial behavior. Finnish high activity MAOA genotyped risk alcoholics exhibiting antisocial behavior, high alcohol consumption, and abnormal alcohol-related impulsive and uncontrolled violence might represent an etiologically distinct alcohol dependence subtype.
The Journal of Neuroscience | 2008
Brian J. Mickey; Francesca Ducci; Colin A. Hodgkinson; Scott A. Langenecker; David Goldman; Jon Kar Zubieta
The serotonergic system, including the serotonin 1A (5-HT1A) receptor, has been implicated in the pathophysiology of a number of neuropsychiatric disorders. Current data show substantial interindividual variation in the regional concentration of this receptor site, the source of which is unclear. Monoamine oxidase A (MAO-A) is a key regulator of serotonin metabolism, and polymorphic variation in the X-linked MAO-A gene influences its expression. We hypothesized that polymorphism in the MAO-A gene would be associated with sex-specific variation in 5-HT1A receptor expression. We used positron emission tomography and [11C]WAY-100635 to quantify 5-HT1A receptors in a group of 31 healthy and unmedicated depressed individuals. The same individuals were genotyped for an upstream variable number tandem repeat polymorphism in the promoter of the MAO-A gene. ANOVA of 5-HT1A receptor availability demonstrated a significant effect of MAO-A genotype in the raphe nuclei, medial and inferior temporal cortex, insula, medial prefrontal cortex, and anterior cingulate (p < 0.05). The effect persisted when age, race, body mass index, and diagnosis were included in the model. Genotypes with greater putative MAO-A activity were associated with greater 5-HT1A receptor availability in women, but not in men. Genotype predicted a substantial 42–74% of the variance in receptor availability in women, depending on the brain region (p < 0.05). Depression diagnosis was not associated with MAO-A genotype or 5-HT1A receptor availability in these regions. These results demonstrate a sex-specific interaction between two key molecules of the human serotonergic system, and suggest a neurobiological basis for sexual dimorphism in serotonin-modulated phenotypes.
Alcoholism: Clinical and Experimental Research | 2010
Roope Tikkanen; Francesca Ducci; David Goldman; Matti Holi; Nina Lindberg; Jari Tiihonen; Matti Virkkunen
BACKGROUND A polymorphism in the promoter region of the monoamine oxidase A gene (MAOA) has been shown to alter the effect of persistent drinking and childhood maltreatment on the risk for violent and antisocial behaviors. These findings indicate that MAOA could contribute to inter-individual differences in stress resiliency. METHODS Recidivism in severe violent crimes was assessed after 8 years of nonincarcerated follow-up in a male sample of 174 impulsive Finnish alcoholic violent offenders, the majority of whom exhibited antisocial (ASPD) or borderline personality disorder (BPD) or both. We examined whether MAOA genotype alters the effects of heavy drinking and childhood physical abuse (CPA) on the risk for committing impulsive recidivistic violent crimes. RESULTS Logistic regression analyses showed that both heavy drinking and CPA were significant independent predictors of recidivism in violent behavior (OR 5.2, p = 0.004 and OR 5.3, p = 0.003) among offenders having the high MAOA activity genotype (MAOA-H), but these predictors showed no effect among offenders carrying the low MAOA activity genotype (MAOA-L). CONCLUSION Carriers of the MAOA-H allele have a high risk to commit severe recidivistic impulsive violent crimes after exposure to heavy drinking and CPA.
Psychiatry Research-neuroimaging | 2011
Roope Tikkanen; Laura Auvinen-Lintunen; Francesca Ducci; Rickard L. Sjöberg; David Goldman; Jari Tiihonen; Ilkka Ojansuu; Matti Virkkunen
The Revised Psychopathy Checklist (PCL-R) has shown a moderate association with violence. The efficacy of PCL-R in varying monoamine oxidase A (MAOA) genotypes is, however, unexamined. The aim of this study was to investigate the effect of PCL-R and psychopathy on the risk for violent reconvictions among 167 MAOA genotyped alcoholic offenders. Violent reconvictions and PCL-R scores among violent offenders were assessed after a 7-year non-incarcerated follow-up. Regression analysis was used to evaluate the alcohol exposure and age-adjusted effect of PCL-R score and psychopathy on the risk for reconvictions among differing MAOA genotypes. Results suggest that the PCL-R total score predicts impulsive reconvictions among high-activity MAOA offenders (6.8% risk increase for every one-point increase in PCL-R total score, P = 0.015), but not among low-activity MAOA offenders, whereas antisocial behavior and attitudes predicted reconvictions in both genotypes (17% risk increase among high-activity MAOA offenders and 12.8% increase among low-activity MAOA offenders for every one-point increase in factor 2 score). Both narcissistic self-image with related interpersonal style (factor 1 score) and psychopathy (PCL-R ≥ 30) failed to predict future violence. Results suggest that the efficacy of PCL-R is altered by MAOA genotype, alcohol exposure, and age, which seems important to note when PCL-R is used for risk assessments that will have legal or costly preventive work consequences.