Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesca Finetti is active.

Publication


Featured researches published by Francesca Finetti.


Nature Cell Biology | 2009

Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse

Francesca Finetti; Silvia Rossi Paccani; Maria Giovanna Riparbelli; Emiliana Giacomello; Giuseppe Perinetti; Gregory J. Pazour; Joel L. Rosenbaum; Cosima T. Baldari

Most eukaryotic cells have a primary cilium which functions as a sensory organelle. Cilia are assembled by intraflagellar transport (IFT), a process mediated by multimeric IFT particles and molecular motors. Here we show that lymphoid and myeloid cells, which lack primary cilia, express IFT proteins. IFT20, an IFT component essential for ciliary assembly, was found to colocalize with both the microtubule organizing centre (MTOC) and Golgi and post-Golgi compartments in T-lymphocytes. In antigen-specific conjugates, IFT20 translocated to the immune synapse. IFT20 knockdown resulted in impaired T-cell receptor/CD3 (TCR/CD3) clustering and signalling at the immune synapse, due to defective polarized recycling. Moreover, IFT20 was required for the inducible assembly of a complex with other IFT components (IFT57 and IFT88) and the TCR. The results identify IFT20 as a new regulator of immune synapse assembly in T cells and provide the first evidence to implicate IFT in membrane trafficking in cells lacking primary cilia, thereby introducing a new perspective on IFT function beyond its role in ciliogenesis.


British Journal of Pharmacology | 2009

The cyclophilin inhibitor Debio 025 normalizes mitochondrial function, muscle apoptosis and ultrastructural defects in Col6a1−/− myopathic mice

Tiepolo T; Alessia Angelin; Elena Palma; Sabatelli P; Luciano Merlini; Nicolosi L; Francesca Finetti; Braghetta P; Vuagniaux G; Dumont Jm; Cosima T. Baldari; Paolo Bonaldo; Paolo Bernardi

Background and purpose:  We have investigated the therapeutic effects of the selective cyclophilin inhibitor D‐MeAla3‐EtVal4‐cyclosporin (Debio 025) in myopathic Col6a1−/− mice, a model of muscular dystrophies due to defects of collagen VI.


Biochemical and Biophysical Research Communications | 2003

Molecular modelling of S1 and S2 subunits of SARS coronavirus spike glycoprotein

Ottavia Spiga; Andrea Bernini; Arianna Ciutti; Stefano Chiellini; Nicola Menciassi; Francesca Finetti; Vincenza Causarono; Francesca Anselmi; Filippo Prischi; Neri Niccolai

Abstract The S1 and S2 subunits of the spike glycoprotein of the coronavirus which is responsible for the severe acute respiratory syndrome (SARS) have been modelled, even though the corresponding amino acid sequences were not suitable for tertiary structure predictions with conventional homology and/or threading procedures. An indirect search for a protein structure to be used as a template for 3D modelling has been performed on the basis of the genomic organisation similarity generally exhibited by coronaviruses. The crystal structure of Clostridium botulinum neurotoxin B appeared to be structurally adaptable to human and canine coronavirus spike protein sequences and it was successfully used to model the two subunits of SARS coronavirus spike glycoprotein. The overall shape and the surface hydrophobicity of the two subunits in the obtained models suggest the localisation of the most relevant regions for their activity.


Journal of Cell Science | 2014

Specific recycling receptors are targeted to the immune synapse by the intraflagellar transport system

Francesca Finetti; Laura Patrussi; Giulia Masi; Anna Onnis; Donatella Galgano; Orso Maria Lucherini; Gregory J. Pazour; Cosima T. Baldari

ABSTRACT T cell activation requires sustained signaling at the immune synapse, a specialized interface with the antigen-presenting cell (APC) that assembles following T cell antigen receptor (TCR) engagement by major histocompatibility complex (MHC)-bound peptide. Central to sustained signaling is the continuous recruitment of TCRs to the immune synapse. These TCRs are partly mobilized from an endosomal pool by polarized recycling. We have identified IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, as a central regulator of TCR recycling to the immune synapse. Here, we have investigated the interplay of IFT20 with the Rab GTPase network that controls recycling. We found that IFT20 forms a complex with Rab5 and the TCR on early endosomes. IFT20 knockdown (IFT20KD) resulted in a block in the recycling pathway, leading to a build-up of recycling TCRs in Rab5+ endosomes. Recycling of the transferrin receptor (TfR), but not of CXCR4, was disrupted by IFT20 deficiency. The IFT components IFT52 and IFT57 were found to act together with IFT20 to regulate TCR and TfR recycling. The results provide novel insights into the mechanisms that control TCR recycling and immune synapse assembly, and underscore the trafficking-related function of the IFT system beyond ciliogenesis.


Cell Death & Differentiation | 2007

p66SHC promotes T cell apoptosis by inducing mitochondrial dysfunction and impaired Ca2+ homeostasis.

Michela Pellegrini; Francesca Finetti; V Petronilli; Cristina Ulivieri; F Giusti; P Lupetti; M Giorgio; Pier Giuseppe Pelicci; Paolo Bernardi; Cosima T. Baldari

p66Shc, a redox enzyme that enhances reactive oxygen species (ROS) production by mitochondria, promotes T cell apoptosis. We have addressed the mechanisms regulating p66Shc-dependent apoptosis in T cells exposed to supraphysiological increases in [Ca2+]c. p66Shc expression resulted in profound mitochondrial dysfunction in response to the Ca2+ ionophore A23187, as revealed by dissipation of mitochondrial transmembrane potential, cytochrome c release and decreased ATP levels. p66Shc expression also caused a dramatic alteration in the cells’ Ca2+-handling ability, which resulted in Ca2+ overload after A23187 treatment. The impairment in Ca2+ homeostasis was ROS dependent and caused by defective Ca2+ extrusion due at least in part to decreased plasma membrane ATPase (PMCA) expression. Both effects of p66Shc required Ca2+-dependent serine-36 phosphorylation. The mitochondrial effects of p66Shc were potentiated by but not strictly dependent on the rise in [Ca2+]c. Thus, Ca2+-dependent p66Shc phosphorylation causes both mitochondrial dysfunction and impaired Ca2+ homeostasis, which synergize in promoting T cell apoptosis.


Journal of Cell Science | 2015

The small GTPase Rab8 interacts with VAMP-3 to regulate the delivery of recycling T-cell receptors to the immune synapse.

Francesca Finetti; Laura Patrussi; Donatella Galgano; Chiara Cassioli; Giuseppe Perinetti; Gregory J. Pazour; Cosima T. Baldari

ABSTRACT IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, regulates immune synapse assembly in the non-ciliated T-cell by promoting T-cell receptor (TCR) recycling. Here, we have addressed the role of Rab8 (for which there are two isoforms Rab8a and Rab8b), a small GTPase implicated in ciliogenesis, in TCR traffic to the immune synapse. We show that Rab8, which colocalizes with IFT20 in Rab11+ endosomes, is required for TCR recycling. Interestingly, as opposed to in IFT20-deficient T-cells, TCR+ endosomes polarized normally beneath the immune synapse membrane in the presence of dominant-negative Rab8, but were unable to undergo the final docking or fusion step. This could be accounted for by the inability of the vesicular (v)-SNARE VAMP-3 to cluster at the immune synapse in the absence of functional Rab8, which is responsible for its recruitment. Of note, and similar to in T-cells, VAMP-3 interacts with Rab8 at the base of the cilium in NIH-3T3 cells, where it regulates ciliary growth and targeting of the protein smoothened. The results identify Rab8 as a new player in vesicular traffic to the immune synapse and provide insight into the pathways co-opted by different cell types for immune synapse assembly and ciliogenesis. Highlighted Article: The ciliary regulator Rab8 is co-opted by T-cells during the assembly of the immune synapse to promote the VAMP-3-dependent step of polarized T-cell receptor recycling.


Blood | 2008

The proapoptotic and antimitogenic protein p66SHC acts as a negative regulator of lymphocyte activation and autoimmunity

Francesca Finetti; Michela Pellegrini; Cristina Ulivieri; Maria Teresa Savino; Eugenio Paccagnini; Chiara Ginanneschi; Luisa Lanfrancone; Pier Giuseppe Pelicci; Cosima T. Baldari

The ShcA locus encodes 3 protein isoforms that differ in tissue specificity, subcellular localization, and function. Among these, p66Shc inhibits TCR coupling to the Ras/MAPK pathway and primes T cells to undergo apoptotic death. We have investigated the outcome of p66Shc deficiency on lymphocyte development and homeostasis. We show that p66Shc(-/-) mice develop an age-related lupus-like autoimmune disease characterized by spontaneous peripheral T- and B-cell activation and proliferation, autoantibody production, and immune complex deposition in kidney and skin, resulting in autoimmune glomerulonephritis and alopecia. p66Shc(-/-) lymphocytes display enhanced proliferation in response to antigen receptor engagement in vitro and more robust immune responses both to vaccination and to allergen sensitization in vivo. The data identify p66Shc as a negative regulator of lymphocyte activation and show that loss of this protein results in breaking of immunologic tolerance and development of systemic autoimmunity.


Trends in Immunology | 2011

Intraflagellar transport: a new player at the immune synapse

Francesca Finetti; Silvia Rossi Paccani; Joel L. Rosenbaum; Cosima T. Baldari

The assembly and maintenance of primary cilia, which orchestrate signaling pathways centrally implicated in cell proliferation, differentiation and migration, are ensured by multimeric protein particles in a process known as intraflagellar transport (IFT). It has recently been demonstrated that a number of IFT components are expressed in hematopoietic cells, which have no cilia. Here, we summarize data for an unexpected role of IFT proteins in immune synapse assembly and intracellular membrane trafficking in T lymphocytes, and discuss the hypothesis that the immune synapse could represent the functional homolog of the primary cilium in these cells.


Blood | 2010

Impaired expression of p66Shc, a novel regulator of B-cell survival, in chronic lymphocytic leukemia

Nagaja Capitani; Orso Maria Lucherini; Elisa Sozzi; Micol Ferro; Nico Giommoni; Francesca Finetti; Giulia De Falco; Emanuele Cencini; Donatella Raspadori; Pier Giuseppe Pelicci; Francesco Lauria; Francesco Forconi; Cosima T. Baldari

Intrinsic apoptosis defects underlie to a large extent the extended survival of malignant B cells in chronic lymphocytic leukemia (CLL). Here, we show that the Shc family adapter p66Shc uncouples the B-cell receptor (BCR) from the Erk- and Akt-dependent survival pathways, thereby enhancing B-cell apoptosis. p66Shc expression was found to be profoundly impaired in CLL B cells compared with normal peripheral B cells. Moreover, significant differences in p66Shc expression were observed in patients with favorable or unfavorable prognosis, based on the mutational status of IGHV genes, with the lowest expression in the unfavorable prognosis group. Analysis of the expression of genes implicated in apoptosis defects of CLL showed an alteration in the balance of proapoptotic and antiapoptotic members of the Bcl-2 family in patients with CLL. Reconstitution experiments in CLL B cells, together with data obtained on B cells from p66Shc(-/-) mice, showed that p66Shc expression correlates with a bias in the Bcl-2 family toward proapoptotic members. The data identify p66Shc as a novel regulator of B-cell apoptosis which attenuates BCR-dependent survival signals and modulates Bcl-2 family expression. They moreover provide evidence that the p66Shc expression defect in CLL B cells may be causal to the imbalance toward the antiapoptotic Bcl-2 family members in these cells.


Immunological Reviews | 2009

Positive and negative regulation of antigen receptor signaling by the Shc family of protein adapters

Francesca Finetti; Maria Teresa Savino; Cosima T. Baldari

Summary:  The Shc adapter family includes four members that are expressed as multiple isoforms and participate in signaling by a variety of cell‐surface receptors. The biological relevance of Shc proteins as well as their variegated function, which relies on their highly conserved modular structure, is underscored by the distinct and dramatic phenotypic alterations resulting from deletion of individual Shc isoforms both in the mouse and in two model organisms, Drosophila melanogaster and Caenorhabditis elegans. The p52 isoform of ShcA couples antigen and cytokine receptors to Ras activation in both lymphoid and myeloid cells. However, the recognition of the spectrum of activities of p52ShcA in the immune system has been steadily expanding in recent years to other fundamental processes both at the cell and organism levels. Two other Shc family members, p66ShcA and p52ShcC/Rai, have been identified recently in T and B lymphocytes, where they antagonize survival and attenuate antigen receptor signaling. These developments reveal an unexpected and complex interplay of multiple Shc proteins in lymphocytes.

Collaboration


Dive into the Francesca Finetti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pier Giuseppe Pelicci

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge