Francesca Gissi
Commonwealth Scientific and Industrial Research Organisation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francesca Gissi.
Ecotoxicology and Environmental Safety | 2013
Francesca Gissi; Monique T. Binet; Merrin S. Adams
Globally there is limited toxicity data for tropical marine species, and there has been a call for further research and development in the area of tropical marine ecotoxicology. An increase in developmental pressures in northern tropical Australia is causing a higher demand for toxicity test protocols with ecologically relevant species. Copepods are a diverse group of zooplankton that are major components of marine food webs. The calanoid copepod Acartia sinjiensis is widely distributed across tropical and sub-tropical brackish to marine waters of Australia and was identified in a recent comprehensive review of marine tropical toxicity testing in Australia as a suitable test organism. Through a number of optimisation steps including feeding trials, changes to culture and test conditions; a 48-h acute toxicity test with A. sinjiensis was modified to become a highly reliable and reproducible standard test protocol. Control mobility was improved significantly, and the sensitivity of A. sinjiensis to copper (EC50 of 33µg/L), ammonia (EC50 of 10mg/L) and phenol (EC50 of 13mg/L) fell within the ranges of those reported previously, indicating that the modifications did not alter its sensitivity. In a comprehensive literature search we found that this species was the most sensitive to copper out of a range of marine copepods. The test was also successfully applied in toxicity assessments of four environmental samples: two produced formations waters (PFWs) and two mine tailing liquors (MTLs). The toxicity assessments utilised toxicity data from a suite of marine organisms (bacteria, microalgae, copepods, sea urchins, oysters, prawns, and fish). For the PFWs, which were predominantly contaminated with organic chemicals, A. sinjiensis was the most sensitive species (EC50 value 2-17 times lower than for any other test species). For the predominantly metal-contaminated mine tailing liquors, its sensitivity was similar to that of other test species used. The modified 48-h acute toxicity test with A. sinjiensis proved to be a valuable tool in these toxicity assessments, and is recommended for use in tropical marine toxicity assessments for northern Australia.
Environmental Toxicology and Chemistry | 2013
Laura A. Wendling; Monique T. Binet; Zheng Yuan; Francesca Gissi; Darren J. Koppel; Merrin S. Adams
Prior to the productive use of iron- and steel-making slags as environmental amendments, a risk assessment supported by material characterization concomitant with leaching and ecotoxicological testing is necessary. Five iron- and steel-making slags were characterized geochemically, and the leachability of their elemental constituents was assessed. The toxicity of slag leachate to microalgae (Chlorella sp.), cladocerans (Ceriodaphnia dubia), and bacteria (Vibrio fischeri) was related to elemental composition. Slag leachates with the highest concentrations of dissolved elements were the most toxic (10% effective concentration [EC10] ∼1%), whereas those with the lowest concentrations of elements were the least toxic (EC10 63-85%). It was not possible to determine which elements caused the observed toxicity; however, comparisons with contaminant guidelines and published toxicity data identified several elements of potential environmental concern. Low to moderate activities were measured for radionuclides in the U and Th decay chains in slags. Based on these data, some of the slags examined herein are potentially suitable for use as environmental amendments following ≥10 times dilution to ameliorate potential toxic effects because of leachate pH.
Environmental Pollution | 2016
Francesca Gissi; Jennifer L. Stauber; Monique T. Binet; Lisa A. Golding; Merrin S. Adams; Christian E. Schlekat; Emily R. Garman; Dianne F. Jolley
The South East Asian Melanesian (SEAM) region contains the worlds largest deposits of nickel lateritic ores. Environmental impacts may occur if mining operations are not adequately managed. Effects data for tropical ecosystems are required to assess risks of contaminant exposure and to derive water quality guidelines (WQG) to manage these risks. Currently, risk assessment tools and WQGs for the tropics are limited due to the sparse research on how contaminants impact tropical biota. As part of a larger project to develop appropriate risk assessment tools to ensure sustainable nickel production in SEAM, nickel effects data were required. The aim of this review was to compile data on the effects of nickel on tropical marine, estuarine, pelagic and benthic species, with a particular focus on SEAM. There were limited high quality chronic nickel toxicity data for tropical marine species, and even fewer for those relevant to SEAM. Of the data available, the most sensitive SEAM species to nickel were a sea urchin, copepod and anemone. There is a significant lack of high quality chronic data for several ecologically important taxonomic groups including cnidarians, molluscs, crustaceans, echinoderms, macroalgae and fish. No high quality chronic nickel toxicity data were available for estuarine waters or marine and estuarine sediments. The very sparse toxicity data for tropical species limits our ability to conduct robust ecological risk assessment and may require additional data generation or read-across from similar species in other databases (e.g. temperate) to fill data gaps. Recommendations on testing priorities to fill these data gaps are presented.
Marine Genomics | 2014
Sharon E. Hook; Hannah L. Osborn; Francesca Gissi; Philippe Moncuquet; Natalie A. Twine; Marc R. Wilkins; Merrin S. Adams
Diatoms are of enormous ecological importance as they account for as much as 20% of global primary production, yet they are still understudied from a genomic perspective. The benthic diatom Ceratoneis closterium is well-characterized from an ecotoxicological perspective including its use in ecotoxicological risk assessments and investigating the mode-of-action of metal toxicity. However, this organism has little sequence information available. In this study, 454 pyrosequencing of the stressor-responsive transcriptome was undertaken. These transcripts could be used to characterize general physiological processes such as photosynthesis and respiration, as well as to enable a description of the ecotoxicogenomic responses of this organism. After a 96 h exposure to the concentration of toxicant that inhibited growth rate by 10% (IC10) for the following common coastal contaminants: ammonia, copper, crude oil and simazine (a photosystem II inhibiting herbicide), diatom cells were harvested for RNA extraction and their transcriptomes characterized via 454 pyrosequencing. This resulted in 1.25 million reads, which were assembled into 4768 contigs, when contigs encoding rRNA were removed. More than 80% of the remaining contigs had an ortholog in the BLASTx protein databases. These contigs represented 1660 unique transcripts. The role of these transcripts in stress response, as well as photosynthesis and respiration is discussed. Overall, this study greatly enhances the genomic information available for this important taxonomic group.
Environmental Toxicology and Chemistry | 2015
Francesca Gissi; Merrin S. Adams; Catherine K. King; Dianne F. Jolley
Despite evidence of contamination in Antarctic coastal marine environments, no water-quality guidelines have been established for the region because of a paucity of biological effects data for local Antarctic species. Currently, there is limited information on the sensitivity of Antarctic microalgae to metal contamination, which is exacerbated by the lack of standard toxicity testing protocols for local marine species. In the present study, a routine and robust toxicity test protocol was developed using the Antarctic marine microalga Phaeocystis antarctica, and its sensitivity was investigated following 10-d exposures to dissolved copper, cadmium, lead, zinc, and nickel. In comparisons of 10% inhibition of population growth rate (IC10) values, P. antarctica was most sensitive to copper (3.3 μg/L), followed by cadmium (135 μg/L), lead (260 μg/L), and zinc (450 μg/L). Although an IC10 value for nickel could not be accurately estimated, the no-observed-effect concentration value for nickel was 1070 μg/L. Exposure to copper and cadmium caused changes in internal cell granularity and increased chlorophyll a fluorescence. Lead, zinc, and nickel had no effect on any of the cellular parameters measured. The present study provides valuable metal-ecotoxicity data for an Antarctic marine microalga, with P. antarctica representing one of the most sensitive microalgal species to dissolved copper ever reported when compared with temperate and tropical species.
Ecotoxicology and Environmental Safety | 2017
Francesca Gissi; J.L. Stauber; Amanda J Reichelt-Brushett; Peter Lynton Harrison; Dianne F. Jolley
The mining and production of nickel in tropical regions have the potential to impact on ecologically valuable tropical marine ecosystems. Currently, few data exist to assess the risks of nickel exposure to tropical ecosystems and to derive ecologically relevant water quality guidelines. In particular, data are lacking for keystone species such as scleractinian corals, which create the complex structural reef habitats that support many other marine species. As part of a larger study developing risk assessment tools for nickel in the tropical Asia-Pacific region, we investigated the toxicity of nickel on fertilisation success in three species of scleractinian corals: Acropora aspera, Acropora digitifera and Platygyra daedalea. In the literature, more data are available on the effects of copper on coral fertilisation, so to allow for comparisons with past studies, the toxicity of copper to A. aspera and P. daedalea was also determined. Overall, copper was more toxic than nickel to the fertilisation success of the species tested. Acropora aspera was the most sensitive species to nickel (NOEC < 280µg Ni/L), followed by A. digitifera with an EC10 of 2000µg Ni/L and P. daedalea (EC10 > 4610µg Ni/L). Acropora aspera was also the more sensitive species to copper with an EC10 of 5.8µg Cu/L. The EC10 for P. daedalea was 16µg Cu/L, similar to previous studies. This is the first time that the toxicity of nickel on fertilisation success in Acropora species has been reported, and thus provides valuable data that can contribute to the development of reliable water quality guidelines for nickel in tropical marine waters.
Environmental Toxicology and Chemistry | 2013
Laura A. Wendling; Monique T. Binet; Zheng Yuan; Francesca Gissi; Darren J. Koppel; Merrin S. Adams
Thorough examination of the physicochemical characteristics of a Ti-processing residue was undertaken, including mineralogical, geochemical, and radiochemical characterization, and an investigation of the environmental toxicity of soft-water leachate generated from the residue. Concentrations of most metals measured in the leachate were low; thus, the residue is unlikely to leach high levels of potentially toxic elements on exposure to low-ionic strength natural waters. Relative to stringent ecosystem health-based guidelines, only chromium concentrations in the leachate exceeded guideline concentrations for 95% species protection; however, sulfate was present at concentrations known to cause toxicity. It is likely that the high concentration of calcium and extreme water hardness of the leachate reduced the bioavailability of some elements. Geochemical modeling of the leachate indicated that calcium and sulfate concentrations were largely controlled by gypsum mineral dissolution. The leachate was not toxic to the microalga Chlorella sp., the cladoceran Ceriodaphnia dubia, or the estuarine bacterium Vibrio fischeri. The Ti-processing residue exhibited an absorbed dose rate of 186 nGy/h, equivalent to an annual dose of 1.63 mGy and an annual effective dose of 0.326 mGy. In summary, the results indicate that the Ti-processing residue examined is suitable for productive use as an environmental amendment following 10 to 100 times dilution to ameliorate potential toxic effects due to chromium or sulfate.
Environmental Toxicology and Chemistry | 2018
Monique T. Binet; Merrin S. Adams; Francesca Gissi; Lisa A. Golding; Christian E. Schlekat; Emily R. Garman; Graham Merrington; Jennifer L. Stauber
More than two-thirds of the worlds nickel (Ni) lateritic deposits are in tropical regions, and just less than half are within South East Asia and Melanesia (SEAM). With increasing Ni mining and processing in SEAM, environmental risk assessment tools are required to ensure sustainable development. Currently, there are no tropical-specific water or sediment quality guideline values for Ni, and the appropriateness of applying guideline values derived for temperate systems (e.g., Europe) to tropical ecosystems is unknown. Databases of Ni toxicity and toxicity tests for tropical freshwater and sediment species were compiled. Nickel toxicity data were ranked, using a quality assessment, identifying data to potentially use to derive tropical-specific Ni guideline values. There were no data for Ni toxicity in tropical freshwater sediments. For tropical freshwaters, of 163 Ni toxicity values for 40 different species, high-quality chronic data, based on measured Ni concentrations, were found for just 4 species (1 microalga, 2 macrophytes, and 1 cnidarian), all of which were relevant to SEAM. These data were insufficient to calculate tropical-specific guideline values for long-term aquatic ecosystem protection in tropical regions. For derivation of high-reliability tropical- or SEAM-specific water and sediment quality guideline values, additional research effort is required. Using gap analysis, we recommend how research gaps could be filled. Environ Toxicol Chem 2018;37:293-317.
Ecotoxicology and Environmental Safety | 2018
Francesca Gissi; J.L. Stauber; Monique T. Binet; Melanie A. Trenfield; Joost W. van Dam; Dianne F. Jolley
The mining and processing of nickel ores from tropical regions contributes 40% of the global supply. The potential impact of these activities on tropical marine ecosystems is poorly understood. Due to the lack of ecotoxicity data for tropical marine species, there is currently no available water quality guideline value for nickel that is specific to tropical species. In this study, we investigated the toxicity of nickel to three tropical marine invertebrates, the gastropod Nassarius dorsatus, the barnacle Amphibalanus amphitrite, and the copepod Acartia sinjiensis. All toxicity tests used chronic endpoints, namely larval growth, metamorphosis (transition from nauplii to cyprid larvae) and larval development for the snail, barnacle and copepod respectively. Toxicity tests were carried out under environmentally relevant conditions (i.e. 27-30ᵒC, salinity 34-36‰, pH 8.1-8.4). Copper was also tested for quality assurance purposes and to allow for comparisons with previous studies. The copepod was the most sensitive species to nickel, with development inhibited by 10% (EC10) at 5.5 (5.0-6.0) µg Ni/L (95% confidence limits (CL)). Based on EC10 values, the gastropod and barnacle showed similar sensitivities to nickel with growth and metamorphosis inhibited by 10% at 64 (37-91) µg Ni/L and 67 (53-80) µg Ni/L, respectively. Based on existing data available in the literature, the copepod A. sinjiensis is so far the most sensitive tropical marine species to nickel. This study has provided high quality data which will contribute to the development of a water quality guideline value for nickel in tropical marine waters. A species sensitivity distribution of chronic nickel toxicity used the data generated in this paper supplemented by available literature data, comprising 12 species representing 6 taxonomic groups. A 5% hazard concentration (HC5) was determined as 8.2 µg/L Ni.
Environmental Pollution | 2017
Darren J. Koppel; Francesca Gissi; Merrin S. Adams; Catherine K. King; Dianne F. Jolley
Collaboration
Dive into the Francesca Gissi's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputs