Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa A. Golding is active.

Publication


Featured researches published by Lisa A. Golding.


Environmental Toxicology and Chemistry | 2015

Derivation of a water quality guideline for aluminium in marine waters

Lisa A. Golding; Brad M. Angel; Graeme E. Batley; Simon C. Apte; Rick Krassoi; Christopher J. Doyle

Metal risk assessment of industrialized harbors and coastal marine waters requires the application of robust water quality guidelines to determine the likelihood of biological impacts. Currently there is no such guideline available for aluminium in marine waters. A water quality guideline of 24 µg total Al/L has been developed for aluminium in marine waters based on chronic 10% inhibition or effect concentrations (IC10 or EC10) and no-observed-effect concentrations (NOECs) from 11 species (2 literature values and 9 species tested including temperate and tropical species) representing 6 taxonomic groups. The 3 most sensitive species tested were a diatom Ceratoneis closterium (formerly Nitzschia closterium; IC10 = 18 µg Al/L, 72-h growth rate inhibition) < mussel Mytilus edulis plannulatus (EC10 = 250 µg Al/L, 72-h embryo development) < oyster Saccostrea echinata (EC10 = 410 µg Al/L, 48-h embryo development). Toxicity to these species was the result of the dissolved aluminium forms of aluminate (Al(OH4 (-) ) and aluminium hydroxide (Al(OH)3 (0) ) although both dissolved, and particulate aluminium contributed to toxicity in the diatom Minutocellus polymorphus and green alga Dunaliella tertiolecta. In contrast, aluminium toxicity to the green flagellate alga Tetraselmis sp. was the result of particulate aluminium only. Four species, a brown macroalga (Hormosira banksii), sea urchin embryo (Heliocidaris tuberculata), and 2 juvenile fish species (Lates calcarifer and Acanthochromis polyacanthus), were not adversely affected at the highest test concentration used.


Journal of Applied Ecology | 2014

Ecological evidence links adverse biological effects to pesticide and metal contamination in an urban Australian watershed

Claudette R. Kellar; Kathryn L. Hassell; Sara M. Long; Jackie H. Myers; Lisa A. Golding; Gavin Rose; Anupama Kumar; Ary A. Hoffmann; Vincent Pettigrove

Summary: Aquatic ecosystems near urban areas are often ecologically impaired, but causative factors are rarely identified. Effects may be revealed by considering multiple lines of evidence at different levels of biological organization. Biological impairment is evident in the urban section of the Upper Dandenong Creek Catchment (Victoria, Australia). We assessed whether episodic sewage spills or other pollutants were the cause of poor ecological condition in the stream. The evidence evaluated included chemical and invertebrate assessments, caging studies of mudsnails Potamopyrgus antipodarum, antioxidant biomarkers and endocrine disruption-related endpoints in fish (Carassius auratus and Gambusia holbrooki) and toxicological studies with chironomids (Chironomus tepperi). A combination of metals and pesticides is likely to be affecting the aquatic fauna across all biological levels, with macroinvertebrate communities, P. antipodarum and C. tepperi populations and C. auratus individuals all ecologically impaired. Adverse alterations to aquatic fauna were consistently seen in Bungalook Creek and persisted downstream of this confluence into Dandenong Creek. In addition, chemical assessments and toxicity identification evaluation (TIEs) resulted in several point sources of both metals and pesticides being identified as origins of impairment. This contrasted with an expectation that adverse effects were likely to be associated with sewer-related pollution. As a consequence, target areas and specific pollutants were identified for remediation instead of an expensive sewer upgrade. Synthesis and applications. The results demonstrate that it is important to investigate biological effects in different taxa, in both the laboratory and field, to understand which stressors are causing adverse effects on faunal assemblages. When adverse effects are seen across multiple levels of biological organization and caused by the same pollutant from an identifiable source, there is a clear


Journal of Environmental Radioactivity | 2017

Aquatic live animal radiotracing studies for ecotoxicological applications: Addressing fundamental methodological deficiencies

Tom Cresswell; Marc Metian; Lisa A. Golding; Michael D. Wood

The use of live animal gamma radioisotope tracer techniques in the field of ecotoxicology allows laboratory studies to accurately monitor contaminant biokinetics in real time for an individual organism. However, methods used in published studies for aquatic organisms are rarely described in sufficient detail to allow for study replication or an assessment of the errors associated with live animal radioanalysis to be identified. We evaluate the influence of some important methodological deficiencies through an overview of the literature on live aquatic animal radiotracer techniques and through the results obtained from our radiotracer studies on four aquatic invertebrate species. The main factors discussed are animal rinsing, radioanalysis and geometry corrections. We provide examples of three main techniques in live aquatic animal radiotracer studies to improve data quality control and demonstrate why each technique is crucial in interpreting the data from such studies. The animal rinsing technique is also relevant to non-radioisotope tracer studies, especially those involving nanoparticles. We present clear guidance on how to perform each technique and explain the importance of proper reporting of the validation of each technique for individual studies. In this paper we describe methods that are often used in lab-based radioecology studies but are rarely described in great detail. We hope that this paper will act as the basis for standard operating procedures for future radioecology studies to improve study replication and data quality control.


Environmental Chemistry | 2016

Geochemical controls on aluminium concentrations in coastal waters

Brad M. Angel; Simon C. Apte; Graeme E. Batley; Lisa A. Golding

Environmental context Aluminium may be released into coastal waters in dissolved and particulate forms from urban runoff, industrial discharges and acid sulfate soils. Aquatic organisms may experience toxic effects from exposure to dissolved and particulate aluminium. Therefore, the current study reports the geochemical controls such as speciation, precipitation and adsorption that influence the exposure to these aluminium forms in the field and the laboratory. Abstract A combination of field and laboratory investigations was conducted in order to gain an understanding of aluminium dynamics in coastal seawater environments. Filterable ( 0.025 to <0.45µm) aluminium species were generally minimal, apart from one field sample collected close to a river mouth where aluminium was associated with iron-containing colloids. In seawater (pH 8.15, 22°C) spiked with small increments of aluminium so as not to attain supersaturation, the solubility limit was ~500µgL–1. However, at higher total aluminium concentrations the solution chemistry became highly dynamic. In the presence of aluminium precipitate it was not possible to measure a solubility limit over the 28-day duration of the experiment because the dissolved aluminium concentration varied with both reaction time and precipitate concentration. For instance, when seawater solutions were spiked with 10000µgL–1 of total aluminium, a pulse of dissolved aluminium up to 1250µgL–1 was sustained for several days before decreasing to below 100µgL–1 after 28 days. The initial precipitate appeared to be solely aluminium hydroxide and transformed over time to contain increasing magnesium, consistent with the formation of hydrotalcite (Mg6Al2CO3(OH)16·4H2O), reaching 21% of the precipitate mass after 28 days. Adsorption studies showed that at anticipated suspended particulate concentrations for coastal waters, natural particulate material has a fairly low affinity for dissolved aluminium. The results of the current study highlight the complex chemistry of aluminium in marine waters and the role of precipitation reactions.


Aquatic Toxicology | 2016

Toxicity of dissolved and precipitated aluminium to marine diatoms

Megan L. Gillmore; Lisa A. Golding; Brad M. Angel; Merrin S. Adams; Dianne F. Jolley

Localised aluminium contamination can lead to high concentrations in coastal waters, which have the potential for adverse effects on aquatic organisms. This research investigated the toxicity of 72-h exposures of aluminium to three marine diatoms (Ceratoneis closterium (formerly Nitzschia closterium), Minutocellus polymorphus and Phaeodactylum tricornutum) by measuring population growth rate inhibition and cell membrane damage (SYTOX Green) as endpoints. Toxicity was correlated to the time-averaged concentrations of different aluminium size-fractions, operationally defined as <0.025μm filtered, <0.45μm filtered (dissolved) and unfiltered (total) present in solution over the 72-h bioassay. The chronic population growth rate inhibition after aluminium exposure varied between diatom species. C. closterium was the most sensitive species (10% inhibition of growth rate (72-h IC10) of 80 (55-100)μg Al/L (95% confidence limits)) while M. polymorphus (540 (460-600)μg Al/L) and P. tricornutum (2100 (2000-2200)μg Al/L) were less sensitive (based on measured total aluminium). Dissolved aluminium was the primary contributor to toxicity in C. closterium, while a combination of dissolved and precipitated aluminium forms contributed to toxicity in M. polymorphus. In contrast, aluminium toxicity to the most tolerant diatom P. tricornutum was due predominantly to precipitated aluminium. Preliminary investigations revealed the sensitivity of C. closterium and M. polymorphus to aluminium was influenced by initial cell density with aluminium toxicity significantly (p<0.05) increasing with initial cell density from 10(3) to 10(5)cells/mL. No effects on plasma membrane permeability were observed for any of the three diatoms suggesting that mechanisms of aluminium toxicity to diatoms do not involve compromising the plasma membrane. These results indicate that marine diatoms have a broad range in sensitivity to aluminium with toxic mechanisms related to both dissolved and precipitated aluminium.


Environmental Pollution | 2016

A review of nickel toxicity to marine and estuarine tropical biota with particular reference to the South East Asian and Melanesian region

Francesca Gissi; Jennifer L. Stauber; Monique T. Binet; Lisa A. Golding; Merrin S. Adams; Christian E. Schlekat; Emily R. Garman; Dianne F. Jolley

The South East Asian Melanesian (SEAM) region contains the worlds largest deposits of nickel lateritic ores. Environmental impacts may occur if mining operations are not adequately managed. Effects data for tropical ecosystems are required to assess risks of contaminant exposure and to derive water quality guidelines (WQG) to manage these risks. Currently, risk assessment tools and WQGs for the tropics are limited due to the sparse research on how contaminants impact tropical biota. As part of a larger project to develop appropriate risk assessment tools to ensure sustainable nickel production in SEAM, nickel effects data were required. The aim of this review was to compile data on the effects of nickel on tropical marine, estuarine, pelagic and benthic species, with a particular focus on SEAM. There were limited high quality chronic nickel toxicity data for tropical marine species, and even fewer for those relevant to SEAM. Of the data available, the most sensitive SEAM species to nickel were a sea urchin, copepod and anemone. There is a significant lack of high quality chronic data for several ecologically important taxonomic groups including cnidarians, molluscs, crustaceans, echinoderms, macroalgae and fish. No high quality chronic nickel toxicity data were available for estuarine waters or marine and estuarine sediments. The very sparse toxicity data for tropical species limits our ability to conduct robust ecological risk assessment and may require additional data generation or read-across from similar species in other databases (e.g. temperate) to fill data gaps. Recommendations on testing priorities to fill these data gaps are presented.


Environmental Toxicology and Chemistry | 2018

TOXICITY OF NICKEL TO TROPICAL FRESHWATER AND SEDIMENT BIOTA – A CRITICAL LITERATURE REVIEW AND GAP ANALYSIS

Monique T. Binet; Merrin S. Adams; Francesca Gissi; Lisa A. Golding; Christian E. Schlekat; Emily R. Garman; Graham Merrington; Jennifer L. Stauber

More than two-thirds of the worlds nickel (Ni) lateritic deposits are in tropical regions, and just less than half are within South East Asia and Melanesia (SEAM). With increasing Ni mining and processing in SEAM, environmental risk assessment tools are required to ensure sustainable development. Currently, there are no tropical-specific water or sediment quality guideline values for Ni, and the appropriateness of applying guideline values derived for temperate systems (e.g., Europe) to tropical ecosystems is unknown. Databases of Ni toxicity and toxicity tests for tropical freshwater and sediment species were compiled. Nickel toxicity data were ranked, using a quality assessment, identifying data to potentially use to derive tropical-specific Ni guideline values. There were no data for Ni toxicity in tropical freshwater sediments. For tropical freshwaters, of 163 Ni toxicity values for 40 different species, high-quality chronic data, based on measured Ni concentrations, were found for just 4 species (1 microalga, 2 macrophytes, and 1 cnidarian), all of which were relevant to SEAM. These data were insufficient to calculate tropical-specific guideline values for long-term aquatic ecosystem protection in tropical regions. For derivation of high-reliability tropical- or SEAM-specific water and sediment quality guideline values, additional research effort is required. Using gap analysis, we recommend how research gaps could be filled. Environ Toxicol Chem 2018;37:293-317.


Environmental Toxicology and Chemistry | 2018

Toxicity of dissolved and precipitated forms of barium to a freshwater alga (Chlorella sp. 12) and water flea (Ceriodaphnia dubia)

Lisa A. Golding; Kitty McKnight; Monique T. Binet; Merrin S. Adams; Simon C. Apte

Barium is present at elevated concentrations in oil and gas produced waters, and there is no international water quality guideline value to assess the potential risk of adverse effects to aquatic biota. Sulfate concentration largely controls the solubility of barium in aquatic systems, with insoluble barium sulfate (barite) assumed to be less bioavailable and less toxic than dissolved barium. We exposed aquatic biota to dissolved barium only and to a mixture of dissolved and precipitated barium. The chronic dissolved barium 48-h growth rate inhibition effect concentrations, (EC10 and EC50) for the tropical freshwater alga Chlorella sp. 12 were 40 mg/L (27-54 mg/L 95% confidence limits [CL]), and 240 mg/L (200-280 mg/L 95% CL), respectively. The acute EC10 and EC50 values for 48-h immobilization of the water flea (Ceriodaphnia dubia) by dissolved barium were 14 mg/L (13-15 mg/L 95% CL) and 17 mg/L (16-18 mg/L 95% CL), respectively. Chlorella sp. 12 was significantly more sensitive to precipitated barium than to dissolved barium, whereas the opposite seemed likely for C. dubia. Ceriodaphnia dubia was predicted to be chronically sensitive to dissolved barium at concentrations measured in produced waters and receiving waters, based on a predicted chronic EC10 of 1.7 mg/L derived from the acute EC50/10. Further chronic toxicity data that account for barium toxicity in dissolved and precipitated forms are required to derive a barium guideline for freshwater biota. Environ Toxicol Chem 2018;37:1632-1642.


Ecotoxicology and Environmental Safety | 2014

Transgenerational effects of parental nutritional status on offspring development time, survival, fecundity, and sensitivity to zinc in Chironomus tepperi midges.

Valentina Colombo; Vincent Pettigrove; Lisa A. Golding; Ary A. Hoffmann


Environmental Pollution | 2016

Effects of Lumbriculus variegatus (Annelida, Oligochaete) bioturbation on zinc sediment chemistry and toxicity to the epi-benthic invertebrate Chironomus tepperi (Diptera: Chironomidae) ☆

Valentina Colombo; Vincent Pettigrove; Ary A. Hoffmann; Lisa A. Golding

Collaboration


Dive into the Lisa A. Golding's collaboration.

Top Co-Authors

Avatar

Merrin S. Adams

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Monique T. Binet

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Simon C. Apte

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brad M. Angel

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesca Gissi

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Gavin Rose

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Graeme E. Batley

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge