Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesca Guida is active.

Publication


Featured researches published by Francesca Guida.


Cns & Neurological Disorders-drug Targets | 2013

Palmitoylethanolamide reduces formalin-induced neuropathic-like behaviour through spinal glial/microglial phenotypical changes in mice.

Livio Luongo; Francesca Guida; Serena Boccella; Giulia Bellini; Luisa Gatta; Francesca Rossi; Vito de Novellis; Sabatino Maione

Palmitoylethanolamide (PEA) is an endogenous cannabinoid-like compound in the central nervous system, which can modulate several functions in different pathological states, such as inflammation and pain response. We have here investigated the effect of PEA (5-10 mg/kg, intraperitoneally) on mechanical allodynia and thermal hyperalgesia 3 and 7 days following peripheral injection of formalin. Formalin induced a significant decrease of thermal and mechanical threshold in the injected and contralateral paw. PEA chronic treatment (once per day) significantly reduced mechanical allodynia and thermal hyperalgesia in a dose-dependent manner. Consistently, in vivo electrophysiological analysis revealed a significant increase of the duration and frequency, and a rapid decrease in the onset of evoked activity of the spinal nociceptive neurons 7 days after formalin. PEA normalized the electrophysiological parameters in a dose-dependent manner. Moreover, we investigated PEA effect on the glial/microglial phenotypical changes associated with spinal neuronal sensitization. We found that formalin induced a significant microglia and glia activation normalized by PEA, together with increased expression of glial interleukin 10. Finally, primary microglial cell cultures, conditioned with PEA or vehicle, where transplanted in naive and formalin-treated mice, and nociceptive neurons were recorded. We observed that only PEA-conditioned cells normalized the activity of sensitized nociceptive neurons. In conclusion these data confirm the potent anti-inflammatory and anti-allodynic effect of PEA, and highlight a possible targeted microglial/glial effect of this drug in the spinal cord.


Glia | 2014

The A1 adenosine receptor as a new player in microglia physiology

Livio Luongo; Francesca Guida; R. Imperatore; F. Napolitano; Luisa Gatta; Luigia Cristino; Catia Giordano; Dario Siniscalco; V. Di Marzo; Giulia Bellini; Riccardo Petrelli; Loredana Cappellacci; Alessandro Usiello; V. de Novellis; Francesco Rossi; Sabatino Maione

The purinergic system is highly involved in the regulation of microglial physiological processes. In addition to the accepted roles for the P2X4,7 and P2Y12 receptors activated by adenosine triphosphate (ATP) and adenosine diphosphate, respectively, recent evidence suggests a role for the adenosine A2A receptor in microglial cytoskeletal rearrangements. However, the expression and function of adenosine A1 receptor (A1AR) in microglia is still unclear. Several reports have demonstrated possible expression of A1AR in microglia, but a new study has refuted such evidence. In this study, we investigated the presence and function of A1AR in microglia using biomolecular techniques, live microscopy, live calcium imaging, and in vivo electrophysiological approaches. The aim of this study was to clarify the expression of A1AR in microglia and to highlight its possible roles. We found that microglia express A1AR and that it is highly upregulated upon ATP treatment. Moreover, we observed that selective stimulation of A1AR inhibits the morphological activation of microglia, possibly by suppressing the Ca2+ influx induced by ATP treatment. Finally, we recorded the spontaneous and evoked activity of spinal nociceptive‐specific neuron before and after application of resting or ATP‐treated microglia, with or without preincubation with a selective A1AR agonist. We found that the microglial cells, pretreated with the A1AR agonist, exhibit lower capability to facilitate the nociceptive neurons, as compared with the cells treated with ATP alone. GLIA 2014;62:122–132


European Journal of Pharmacology | 2012

Effects of intra-ventrolateral periaqueductal grey palmitoylethanolamide on thermoceptive threshold and rostral ventromedial medulla cell activity.

Vito de Novellis; Livio Luongo; Francesca Guida; Luigia Cristino; Enza Palazzo; Roberto Russo; Ida Marabese; Giuseppe D'Agostino; Antonio Calignano; Francesca Rossi; Vincenzo Di Marzo; Sabatino Maione

Palmitoylethanolamide (PEA), a peroxisome proliferator-activated receptor-α (PPAR-α) ligand, exerts antinociceptive and anti-inflammatory effects. PEA (3 and 6 nmol) was microinjected in the ventrolateral periaqueductal grey (VL PAG) of male rats and effects on nociceptive responses and ongoing and tail flick-related activities of rostral ventromedial medulla (RVM) ON and OFF cells were recorded. Intra-PAG microinjection of PEA reduced the ongoing activity of ON and OFF cells and produced an increase in the latency of the nociceptive reaction. These effects were prevented by a selective PPAR-α antagonist, GW6471 and by a large-conductance Ca(2+)-activated K(+) channel inhibitor, charybdotoxin. Cannabinoid 1 (CB(1)) receptor blockade by AM251 increased the PEA-induced effect both on the ongoing activity of the ON cell and on the latency to tail flick without affecting the effect of PEA on the OFF cell. Conversely, a transient receptor potential vanilloid type 1 (TRPV(1)) blocker, I-RTX, had no effect on the ON cell activity and tail flick latency, whereas it blocked the PEA-induced decrease in ongoing activity of the OFF cell. PEA decreased the burst and increased the latency of tail flick-evoked onset of ON cell activity in a manner antagonised by GW6471 and charybdotoxin. AM251 and I-RTX, instead, enhanced these latter effects. In conclusion, intra-VL PAG PEA induces antinociceptive effects associated with a decrease in RVM ON and OFF cell activities. PPAR-α receptors mediate, and CB(1) and TRPV(1) receptors antagonise, PEA-induced effects within the PAG-RVM circuitry.


Journal of Medicinal Chemistry | 2011

Investigations on the 4-Quinolone-3-carboxylic Acid Motif. 4. Identification of New Potent and Selective Ligands for the Cannabinoid Type 2 Receptor with Diverse Substitution Patterns and Antihyperalgesic Effects in Mice

Serena Pasquini; Maria Cristina De Rosa; Valentina Pedani; Claudia Mugnaini; Francesca Guida; Livio Luongo; Maria De Chiaro; Sabatino Maione; Stefania Dragoni; Maria Frosini; Alessia Ligresti; Vincenzo Di Marzo; Federico Corelli

Experimental evidence suggests that selective CB2 receptor modulators may provide access to antihyperalgesic agents devoid of psychotropic effects. Taking advantage of previous findings on structure-activity/selectivity relationships for a class of 4-quinolone-3-carboxamides, further structural modifications of the heterocyclic scaffold were explored, leading to the discovery of the 8-methoxy derivative 4a endowed with the highest affinity and selectivity ever reported for a CB2 ligand. The compound, evaluated in vivo in the formalin test, behaved as an inverse agonist by reducing at a dose of 6 mg/kg the second phase of the formalin-induced nocifensive response in mice.


Journal of Medicinal Chemistry | 2010

Investigations on the 4-Quinolone-3-carboxylic Acid Motif. 3. Synthesis, Structure—Affinity Relationships, and Pharmacological Characterization of 6-Substituted 4-Quinolone-3-carboxamides as Highly Selective Cannabinoid-2 Receptor Ligands

Serena Pasquini; Alessia Ligresti; Claudia Mugnaini; Teresa Semeraro; Lavinia Cicione; Maria Cristina De Rosa; Francesca Guida; Livio Luongo; Maria De Chiaro; Maria Grazia Cascio; Daniele Bolognini; Pietro Marini; Roger G. Pertwee; Sabatino Maione; Vincenzo Di Marzo; Federico Corelli

A set of quinolone-3-carboxamides 2 bearing diverse substituents at position 1, 3, and 6 of the bicyclic nucleus was prepared. Except for six compounds exhibiting Ki>100 nM, all the quinolone-3-carboxamides 2 proved to be high affinity CB2 ligands, with Ki values ranging from 73.2 to 0.7 nM and selectivity [SI=Ki(CB1)/Ki(CB2)] varying from >14285 to 1.9, with only 2ah exhibiting a reverse selectivity (SI<1). In the formalin test of peripheral acute and inflammatory pain in mice, 2ae showed analgesic activity that was antagonized by a selective CB2 antagonist. By contrast, 2e was inactive per se and antagonized the effect of a selective CB2 agonist. Finally, 2g and 2p exhibited CB2 inverse agonist-like behavior in this in vivo test. However, two different functional assays carried out in vitro on 2e and 2g indicated for both compounds an overall inverse agonist activity at CB2 receptors.


Molecules | 2012

5'-Chloro-5'-deoxy-(±)-ENBA, a Potent and Selective Adenosine A1 Receptor Agonist, Alleviates Neuropathic Pain in Mice Through Functional Glial and Microglial Changes without Affecting Motor or Cardiovascular Functions

Livio Luongo; Riccardo Petrelli; Luisa Gatta; Catia Giordano; Francesca Guida; Patrizia Vita; Palmarisa Franchetti; Mario Grifantini; V. de Novellis; Loredana Cappellacci; Sabatino Maione

This study was undertaken in order to investigate the effect of chronic treatment with 5′-chloro-5′-deoxy-(±)-ENBA, a potent and highly selective agonist of human adenosine A1 receptor, on thermal hyperalgesia and mechanical allodynia in a mouse model of neuropathic pain, the Spared Nerve Injury (SNI) of the sciatic nerve. Chronic systemic administration of 5′-chloro-5′-deoxy-(±)-ENBA (0.5 mg/kg, i.p.) reduced both mechanical allodynia and thermal hyperalgesia 3 and 7 days post-SNI, in a way prevented by DPCPX (3 mg/kg, i.p.), a selective A1 adenosine receptor antagonist, without exerting any significant change on the motor coordination or arterial blood pressure. In addition, a single intraperitoneal injection of 5′-chloro-5′-deoxy-(±)-ENBA (0.5 mg/kg, i.p.) 7 days post-SNI also reduced both symptoms for at least two hours. SNI was associated with spinal changes in microglial activation ipsilaterally to the nerve injury. Activated, hypertrophic microglia were significantly reduced by 5′-chloro-5′-deoxy-(±)-ENBA chronic treatment. Our results demonstrated an involvement of adenosine A1 receptor in the amplified nociceptive thresholds and in spinal glial and microglial changes occurred in neuropathic pain, without affecting motor coordination or blood pressure. Our data suggest a possible use of adenosine A1 receptor agonist in neuropathic pain symptoms.


Journal of Nutritional Biochemistry | 2016

Hydroxytyrosol prevents metabolic impairment reducing hepatic inflammation and restoring duodenal integrity in a rat model of NAFLD

Claudio Pirozzi; Adriano Lama; Raffaele Simeoli; Orlando Paciello; Teresa Bruna Pagano; Maria Pina Mollica; Francesca Guida; Roberto Russo; Salvatore Magliocca; Roberto Berni Canani; Giuseppina Mattace Raso; Antonio Calignano; Rosaria Meli

The potential mechanisms of action of polyphenols in nonalcoholic fatty liver disease (NAFLD) are overlooked. Here, we evaluate the beneficial therapeutic effects of hydroxytyrosol (HT), the major metabolite of the oleuropein, in a nutritional model of insulin resistance (IR) and NAFLD by high-fat diet. Young male rats were divided into three groups receiving (1) standard diet (STD; 10.5% fat), (2) high-fat diet (HFD; 58.0% fat) and (3) HFD+HT (10 mg/kg/day by gavage). After 5 weeks, the oral glucose tolerance test was performed, and at 6th week, blood sample and tissues (liver and duodenum) were collected for following determinations. The HT-treated rats showed a marked reduction in serum AST, ALT and cholesterol and improved glucose tolerance and insulin sensitivity, reducing homeostasis model assessment index. HT significantly corrected the metabolic impairment induced by HFD, increasing hepatic peroxisome proliferator activated receptor PPAR-α and its downstream-regulated gene fibroblast growth factor 21, the phosphorylation of acetyl-CoA carboxylase and the mRNA carnitine palmitoyltransferase 1a. HT also reduced liver inflammation and nitrosative/oxidative stress decreasing the nitrosylation of proteins, reactive oxygen species production and lipid peroxidation. Moreover, HT restored intestinal barrier integrity and functions (fluorescein isothiocyanate-dextran permeability and mRNA zona occludens ZO-1). Our data demonstrate the beneficial effect of HT in the prevention of early inflammatory events responsible for the onset of IR and steatosis, reducing hepatic inflammation and nitrosative/oxidative stress and restoring glucose homeostasis and intestinal barrier integrity.


British Journal of Pharmacology | 2014

The genetic ablation or pharmacological inhibition of TRPV1 signalling is beneficial for the restoration of quiescent osteoclast activity in ovariectomized mice

Francesco Rossi; Giulia Bellini; Marco Torella; Chiara Tortora; Iolanda Manzo; C Giordano; Francesca Guida; Livio Luongo; F Papale; F Rosso; Bruno Nobili; Sabatino Maione

Osteoporosis is a condition characterized by a decrease in bone density, which decreases its strength and results in fragile bones. The endocannabinoid/endovanilloid system has been shown to be involved in the regulation of skeletal remodelling. The aim of this study was to investigate the possible modulation of bone mass mediated by the transient receptor potential vanilloid type 1 channel (TRPV1) in vivo and in vitro.


Molecular Pain | 2012

Salvinorin A reduces mechanical allodynia and spinal neuronal hyperexcitability induced by peripheral formalin injection

Francesca Guida; Livio Luongo; Gabriella Aviello; Enza Palazzo; Maria De Chiaro; Luisa Gatta; Serena Boccella; Ida Marabese; Jordan K. Zjawiony; Raffaele Capasso; Angelo A. Izzo; Vito de Novellis; Sabatino Maione

BackgroundSalvinorin A (SA), the main active component of Salvia Divinorum, is a non-nitrogenous kappa opioid receptor (KOR) agonist. It has been shown to reduce acute pain and to exert potent antinflammatory effects. This study assesses the effects and the mode of action of SA on formalin-induced persistent pain in mice. Specifically, the SA effects on long-term behavioural dysfuctions and changes in neuronal activity occurring at spinal level, after single peripheral formalin injection, have been investigated. Moreover, the involvement of microglial and glial cells in formalin-induced chronic pain condition and in SA-mediated effects has been evaluated.ResultsFormalin induced a significant decrease of mechanical withdrawal threshold at the injected and contralateral paw as well as an increase in the duration and frequency, and a rapid decrease in the onset of evoked activity of the nociceptive neurons 7 days after formalin injection. SA daily treatment significantly reduced mechanical allodynia in KOR and cannabinoid receptor 1 (CB1R) sensitive manner. SA treatment also normalized the spinal evoked activity. SA significantly reduced the formalin-mediated microglia and astrocytes activation and modulated pro and anti-inflammatory mediators in the spinal cord.ConclusionSA is effective in reducing formalin-induced mechanical allodynia and spinal neuronal hyperactivity. Our findings suggest that SA reduces glial activation and contributes in the establishment of dysfunctions associated with chronic pain with mechanisms involving KOR and CB1R. SA may provide a new lead compound for developing anti-allodynic agents via KOR and CB1R activation.


British Journal of Pharmacology | 2014

Prostamide F2α receptor antagonism combined with inhibition of FAAH may block the pro-inflammatory mediators formed following selective FAAH inhibition

Alessia Ligresti; Jose L. Martos; Jenny W. Wang; Francesca Guida; Marco Allarà; Vittoria Palmieri; Livio Luongo; David F. Woodward; Vincenzo Di Marzo

Prostamides are lipid mediators formed by COX‐2‐catalysed oxidation of the endocannabinoid anandamide and eliciting effects often opposed to those caused by anandamide. Prostamides may be formed when hydrolysis of anandamide by fatty acid amide hydrolase (FAAH) is physiologically, pathologically or pharmacologically decreased. Thus, therapeutic benefits of FAAH inhibitors might be attenuated by concomitant production of prostamide F2α. This loss of benefit might be minimized by compounds designed to selectively antagonize prostamide receptors and also inhibiting FAAH.

Collaboration


Dive into the Francesca Guida's collaboration.

Top Co-Authors

Avatar

Sabatino Maione

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Livio Luongo

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Vito de Novellis

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Enza Palazzo

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Vincenzo Di Marzo

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Ida Marabese

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Serena Boccella

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Luisa Gatta

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Francesca Rossi

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Francesco Rossi

Seconda Università degli Studi di Napoli

View shared research outputs
Researchain Logo
Decentralizing Knowledge