Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesca Mari is active.

Publication


Featured researches published by Francesca Mari.


American Journal of Human Genetics | 2008

FOXG1 Is Responsible for the Congenital Variant of Rett Syndrome

Francesca Ariani; Giuseppe Hayek; Dalila Rondinella; Rosangela Artuso; Maria Antonietta Mencarelli; Ariele Spanhol-Rosseto; Marzia Pollazzon; Sabrina Buoni; Ottavia Spiga; Sara Ricciardi; Ilaria Meloni; Ilaria Longo; Francesca Mari; Vania Broccoli; Michele Zappella; Alessandra Renieri

Rett syndrome is a severe neurodevelopmental disease caused by mutations in the X-linked gene encoding for the methyl-CpG-binding protein MeCP2. Here, we report the identification of FOXG1-truncating mutations in two patients affected by the congenital variant of Rett syndrome. FOXG1 encodes a brain-specific transcriptional repressor that is essential for early development of the telencephalon. Molecular analysis revealed that Foxg1 might also share common molecular mechanisms with MeCP2 during neuronal development, exhibiting partially overlapping expression domain in postnatal cortex and neuronal subnuclear localization.


American Journal of Human Genetics | 2000

A Mutation in the Rett Syndrome Gene, MECP2, Causes X-Linked Mental Retardation and Progressive Spasticity in Males

Ilaria Meloni; Mirella Bruttini; Ilaria Longo; Francesca Mari; Flavio Rizzolio; Patrizia D'Adamo; Koenraad Denvriendt; Jean-Pierre Fryns; Daniela Toniolo; Alessandra Renieri

Heterozygous mutations in the X-linked MECP2 gene cause Rett syndrome, a severe neurodevelopmental disorder of young females. Only one male presenting an MECP2 mutation has been reported; he survived only to age 1 year, suggesting that mutations in MECP2 are male lethal. Here we report a three-generation family in which two affected males showed severe mental retardation and progressive spasticity, previously mapped in Xq27.2-qter. Two obligate carrier females showed either normal or borderline intelligence, simulating an X-linked recessive trait. The two males and the two obligate carrier females presented a mutation in the MECP2 gene, demonstrating that, in males, MECP2 can be responsible for severe mental retardation associated with neurological disorders.


Journal of Medical Genetics | 2005

CDKL5/STK9 is mutated in Rett syndrome variant with infantile spasms

Elisa Scala; Francesca Ariani; Francesca Mari; Rossella Caselli; Chiara Pescucci; I. Longo; Ilaria Meloni; Daniela Giachino; Mirella Bruttini; Giuseppe Hayek; Michele Zappella; Alessandra Renieri

Background: Rett syndrome is a severe neurodevelopmental disorder, almost exclusively affecting females and characterised by a wide spectrum of clinical manifestations. Both the classic form and preserved speech variant of Rett syndrome are due to mutations in the MECP2 gene. Several other variants of Rett syndrome have been described. In 1985, Hanefeld described a variant with the early appearance of convulsions. In this variant, the normal perinatal period is soon followed by the appearance of seizures, usually infantile spasms. We have observed two patients with signs of Rett syndrome showing acquired microcephaly and stereotypic midline hand movements. The disease started with generalised convulsions and myoclonic fits at 1.5 months in the first patient and with spasms at 10 days in the other, suggesting a diagnosis of the Hanefeld variant. In these patients, MECP2 point mutations and gross rearrangements were excluded by denaturing high performance liquid chromatography and real time quantitative PCR. The ARX and CDKL5 genes have been associated with West syndrome (infantile spasms, hypsarrhythmia, and mental retardation). Methods: Based on the clinical overlap between the Hanefeld variant and West syndrome, we analysed ARX and CDKL5 in the two girls. Results: We found frameshift deletions in CDKL5 in both patients; one in exon 5 (c.163_166delGAAA) and the other in exon 18 (c.2635_2636delCT). CDKL5 was then analysed in 19 classic Rett and 15 preserved speech variant patients, all MECP2 negative, but no mutations were found. Conclusion: Our results show that CDKL5 is responsible for a rare variant of Rett syndrome characterised by early development of convulsions, usually of the spasm type.


Oxidative Medicine and Cellular Longevity | 2014

Redox Imbalance and Morphological Changes in Skin Fibroblasts in Typical Rett Syndrome

Cinzia Signorini; Silvia Leoncini; Claudio De Felice; Alessandra Pecorelli; Ilaria Meloni; Francesca Ariani; Francesca Mari; Sonia Amabile; Eugenio Paccagnini; Mariangela Gentile; Giuseppe Belmonte; Gloria Zollo; Giuseppe Valacchi; Thierry Durand; Jean-Marie Galano; Lucia Ciccoli; Alessandra Renieri; Joussef Hayek

Evidence of oxidative stress has been reported in the blood of patients with Rett syndrome (RTT), a neurodevelopmental disorder mainly caused by mutations in the gene encoding the Methyl-CpG-binding protein 2. Little is known regarding the redox status in RTT cellular systems and its relationship with the morphological phenotype. In RTT patients (n = 16) we investigated four different oxidative stress markers, F2-Isoprostanes (F2-IsoPs), F4-Neuroprostanes (F4-NeuroPs), nonprotein bound iron (NPBI), and (4-HNE PAs), and glutathione in one of the most accessible cells, that is, skin fibroblasts, and searched for possible changes in cellular/intracellular structure and qualitative modifications of synthesized collagen. Significantly increased F4-NeuroPs (12-folds), F2-IsoPs (7.5-folds) NPBI (2.3-folds), 4-HNE PAs (1.48-folds), and GSSG (1.44-folds) were detected, with significantly decreased GSH (−43.6%) and GSH/GSSG ratio (−3.05 folds). A marked dilation of the rough endoplasmic reticulum cisternae, associated with several cytoplasmic multilamellar bodies, was detectable in RTT fibroblasts. Colocalization of collagen I and collagen III, as well as the percentage of type I collagen as derived by semiquantitative immunofluorescence staining analyses, appears to be significantly reduced in RTT cells. Our findings indicate the presence of a redox imbalance and previously unrecognized morphological skin fibroblast abnormalities in RTT patients.


Clinical Genetics | 2012

Corpus callosum abnormalities, intellectual disability, speech impairment, and autism in patients with haploinsufficiency of ARID1B

Christina Halgren; Susanne Kjaergaard; Mads Bak; C. Hansen; Zahra El-Schich; Cm Anderson; Karen Friis Henriksen; Helle Hjalgrim; Maria Kirchhoff; Emilia K. Bijlsma; Maartje Nielsen; N.S. den Hollander; Cal Ruivenkamp; Bertrand Isidor; C Le Caignec; R Zannolli; Mafalda Mucciolo; Alessandra Renieri; Francesca Mari; B-M Anderlid; Joris Andrieux; A Dieux; Niels Tommerup; Iben Bache

Halgren C, Kjaergaard S, Bak M, Hansen C, El‐Schich Z, Anderson CM, Henriksen KF, Hjalgrim H, Kirchhoff M, Bijlsma EK, Nielsen M, den Hollander NS, Ruivenkamp CAL, Isidor B, Le Caignec C, Zannolli R, Mucciolo M, Renieri A, Mari F, Anderlid B‐M, Andrieux J, Dieux A, Tommerup N, Bache I. Corpus callosum abnormalities, intellectual disability, speech impairment, and autism in patients with haploinsufficiency of ARID1B.


Journal of Medical Genetics | 2010

Novel FOXG1 mutations associated with the congenital variant of Rett syndrome

Ma Mencarelli; A Spanhol-Rosseto; Rosangela Artuso; D Rondinella; R De Filippis; Nadia Bahi-Buisson; J Nectoux; R Rubinsztajn; Thierry Bienvenu; Anne Moncla; Brigitte Chabrol; Laurent Villard; Z Krumina; Judith Armstrong; A Roche; Mercedes Pineda; E Gak; Francesca Mari; Francesca Ariani; Alessandra Renieri

Background Rett syndrome is a severe neurodevelopmental disorder representing one of the most common genetic causes of mental retardation in girls. The classic form is caused by MECP2 mutations. In two patients affected by the congenital variant of Rett we have recently identified mutations in the FOXG1 gene encoding a brain specific transcriptional repressor, essential for early development of the telencephalon. Methods 60 MECP2/CDKL5 mutation negative European Rett patients (classic and variants), 43 patients with encephalopathy with early onset seizures, and four atypical Rett patients were analysed for mutations in FOXG1. Results and conclusions Mutations have been identified in four patients, independently classified as congenital Rett variants from France, Spain and Latvia. Clinical data have been compared with the two previously reported patients with mutations in FOXG1. In all cases hypotonia, irresponsiveness and irritability were present in the neonatal period. At birth, head circumference was normal while a deceleration of growth was recognised soon afterwards, leading to severe microcephaly. Motor development was severely impaired and voluntary hand use was absent. In contrast with classic Rett, patients showed poor eye contact. Typical stereotypic hand movements with hand washing and hand mouthing activities were present continuously. Some patients showed abnormal movements of the tongue and jerky movements of the limbs. Brain magnetic resonance imaging showed corpus callosum hypoplasia in most cases, while epilepsy was a variable sign. Scoliosis was present and severe in the older patients. Neurovegetative symptoms typical of Rett were frequently present.


Human Molecular Genetics | 2013

A comprehensive molecular study on Coffin–Siris and Nicolaides–Baraitser syndromes identifies a broad molecular and clinical spectrum converging on altered chromatin remodeling

Dagmar Wieczorek; Nina Bögershausen; Filippo Beleggia; Sabine Steiner-Haldenstätt; Esther Pohl; Yun Li; Esther Milz; Marcel Martin; Holger Thiele; Janine Altmüller; Yasemin Alanay; Hülya Kayserili; Ludger Klein-Hitpass; Stefan Böhringer; Andreas Wollstein; Beate Albrecht; Koray Boduroglu; Almuth Caliebe; Krystyna H. Chrzanowska; Ozgur Cogulu; Francesca Cristofoli; Johanna Christina Czeschik; Koenraad Devriendt; Maria Teresa Dotti; Nursel Elcioglu; Blanca Gener; Timm O. Goecke; Małgorzata Krajewska-Walasek; Encarnación Guillén-Navarro; Joussef Hayek

Chromatin remodeling complexes are known to modify chemical marks on histones or to induce conformational changes in the chromatin in order to regulate transcription. De novo dominant mutations in different members of the SWI/SNF chromatin remodeling complex have recently been described in individuals with Coffin-Siris (CSS) and Nicolaides-Baraitser (NCBRS) syndromes. Using a combination of whole-exome sequencing, NGS-based sequencing of 23 SWI/SNF complex genes, and molecular karyotyping in 46 previously undescribed individuals with CSS and NCBRS, we identified a de novo 1-bp deletion (c.677delG, p.Gly226Glufs*53) and a de novo missense mutation (c.914G>T, p.Cys305Phe) in PHF6 in two individuals diagnosed with CSS. PHF6 interacts with the nucleosome remodeling and deacetylation (NuRD) complex implicating dysfunction of a second chromatin remodeling complex in the pathogenesis of CSS-like phenotypes. Altogether, we identified mutations in 60% of the studied individuals (28/46), located in the genes ARID1A, ARID1B, SMARCB1, SMARCE1, SMARCA2, and PHF6. We show that mutations in ARID1B are the main cause of CSS, accounting for 76% of identified mutations. ARID1B and SMARCB1 mutations were also found in individuals with the initial diagnosis of NCBRS. These individuals apparently belong to a small subset who display an intermediate CSS/NCBRS phenotype. Our proposed genotype-phenotype correlations are important for molecular screening strategies.


American Journal of Medical Genetics | 2003

Study of MECP2 gene in Rett syndrome variants and autistic girls.

Michele Zappella; Ilaria Meloni; Ilaria Longo; Roberto Canitano; Giuseppe Hayek; Lucia Rosaia; Francesca Mari; Alessandra Renieri

Mutations in MECP2 gene account for approximately 80% of cases of Rett syndrome (RTT), an X‐linked severe developmental disorder affecting young girls, as well as for most cases of Preserved Speech Variant (PSV), a mild RTT variant in which autistic behavior is common. The aim of this study is to determine whether MECP2 mutations are responsible for PSV only or may cause other forms of autistic disorders. We screened for mutations by SSCP 19 girls with a clinical diagnosis of autism, two of them fulfilling the PSV criteria. A pathogenic mutation was found only in the latter two cases (R133C and R453X). A long follow‐up of these two girls revealed a unique clinical course. They initially developed the first three stages of RTT, they were severely retarded and had autistic behavior. Over the years their abilities increased progressively and by early adolescence they lost autistic behavior, becoming adequately accustomed to people and reaching an IQ close to 45. These results confirm previous clinical studies suggesting that a wide spectrum of RTT exists including girls with mental abilities considerably higher than in classic RTT. We conclude that MECP2 mutations (missense or late truncating) can be found in girls with an IQ close to 45 and a clinical history of PSV of Rett syndrome. Furthermore, MECP2 mutations are not found in patients in which autism remains stable over the years.


American Journal of Medical Genetics Part A | 2009

Mowat–Wilson syndrome: Facial phenotype changing with age: Study of 19 Italian patients and review of the literature

Livia Garavelli; Marcella Zollino; P. Cerruti Mainardi; Fiorella Gurrieri; Francesca Rivieri; F. Soli; R. Verri; E. Albertini; E. Favaron; M. Zignani; Daniela Orteschi; Paolo Emilio Bianchi; Francesca Faravelli; F. Forzano; Marco Seri; Anita Wischmeijer; Daniela Turchetti; Eva Pompilii; M. Gnoli; Guido Cocchi; Laura Mazzanti; Rosalba Bergamaschi; D. De Brasi; M.P. Sperandeo; Francesca Mari; V. Uliana; Rosa Mostardini; M. Cecconi; Marina Grasso; S. Sassi

Mowat–Wilson syndrome (MWS; OMIM #235730) is a genetic condition caused by heterozygous mutations or deletions of the ZEB2 gene, and characterized by typical face, moderate‐to‐severe mental retardation, epilepsy, Hirschsprung disease, and multiple congenital anomalies, including genital anomalies (particularly hypospadias in males), congenital heart defects, agenesis of the corpus callosum, and eye defects. Since the first delineation by Mowat et al. [Mowat et al. ( 1998 ); J Med Genet 35:617–623], ∼179 patients with ZEB2 mutations, deletions or cytogenetic abnormalities have been reported primarily from Europe, Australia and the United States. Genetic defects include chromosome 2q21–q23 microdeletions (or different chromosome rearrangements) in few patients, and ZEB2 mutations in most. We report on clinical and genetic data from 19 Italian patients, diagnosed within the last 5 years, including six previously published, and compare them with patients already reported. The main purpose of this review is to underline a highly consistent phenotype and to highlight the phenotypic evolution occurring with age, particularly of the facial characteristics. The prevalence of MWS is likely to be underestimated. Knowledge of the phenotypic spectrum of MWS and of its changing phenotype with age can improve the detection rate of this condition.


European Journal of Human Genetics | 2011

iPS cells to model CDKL5-related disorders

Mariangela Amenduni; Roberta De Filippis; Aaron Y. L. Cheung; Vittoria Disciglio; Maria Carmela Epistolato; Francesca Ariani; Francesca Mari; Maria Antonietta Mencarelli; Youssef Hayek; Alessandra Renieri; James D. Ellis; Ilaria Meloni

Rett syndrome (RTT) is a progressive neurologic disorder representing one of the most common causes of mental retardation in females. To date mutations in three genes have been associated with this condition. Classic RTT is caused by mutations in the MECP2 gene, whereas variants can be due to mutations in either MECP2 or FOXG1 or CDKL5. Mutations in CDKL5 have been identified both in females with the early onset seizure variant of RTT and in males with X-linked epileptic encephalopathy. CDKL5 is a kinase protein highly expressed in neurons, but its exact function inside the cell is unknown. To address this issue we established a human cellular model for CDKL5-related disease using the recently developed technology of induced pluripotent stem cells (iPSCs). iPSCs can be expanded indefinitely and differentiated in vitro into many different cell types, including neurons. These features make them the ideal tool to study disease mechanisms directly on the primarily affected neuronal cells. We derived iPSCs from fibroblasts of one female with p.Q347X and one male with p.T288I mutation, affected by early onset seizure variant and X-linked epileptic encephalopathy, respectively. We demonstrated that female CDKL5-mutated iPSCs maintain X-chromosome inactivation and clones express either the mutant CDKL5 allele or the wild-type allele that serve as an ideal experimental control. Array CGH indicates normal isogenic molecular karyotypes without detection of de novo CNVs in the CDKL5-mutated iPSCs. Furthermore, the iPS cells can be differentiated into neurons and are thus suitable to model disease pathogenesis in vitro.

Collaboration


Dive into the Francesca Mari's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge