Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ilaria Meloni is active.

Publication


Featured researches published by Ilaria Meloni.


American Journal of Human Genetics | 2008

FOXG1 Is Responsible for the Congenital Variant of Rett Syndrome

Francesca Ariani; Giuseppe Hayek; Dalila Rondinella; Rosangela Artuso; Maria Antonietta Mencarelli; Ariele Spanhol-Rosseto; Marzia Pollazzon; Sabrina Buoni; Ottavia Spiga; Sara Ricciardi; Ilaria Meloni; Ilaria Longo; Francesca Mari; Vania Broccoli; Michele Zappella; Alessandra Renieri

Rett syndrome is a severe neurodevelopmental disease caused by mutations in the X-linked gene encoding for the methyl-CpG-binding protein MeCP2. Here, we report the identification of FOXG1-truncating mutations in two patients affected by the congenital variant of Rett syndrome. FOXG1 encodes a brain-specific transcriptional repressor that is essential for early development of the telencephalon. Molecular analysis revealed that Foxg1 might also share common molecular mechanisms with MeCP2 during neuronal development, exhibiting partially overlapping expression domain in postnatal cortex and neuronal subnuclear localization.


American Journal of Human Genetics | 2000

A Mutation in the Rett Syndrome Gene, MECP2, Causes X-Linked Mental Retardation and Progressive Spasticity in Males

Ilaria Meloni; Mirella Bruttini; Ilaria Longo; Francesca Mari; Flavio Rizzolio; Patrizia D'Adamo; Koenraad Denvriendt; Jean-Pierre Fryns; Daniela Toniolo; Alessandra Renieri

Heterozygous mutations in the X-linked MECP2 gene cause Rett syndrome, a severe neurodevelopmental disorder of young females. Only one male presenting an MECP2 mutation has been reported; he survived only to age 1 year, suggesting that mutations in MECP2 are male lethal. Here we report a three-generation family in which two affected males showed severe mental retardation and progressive spasticity, previously mapped in Xq27.2-qter. Two obligate carrier females showed either normal or borderline intelligence, simulating an X-linked recessive trait. The two males and the two obligate carrier females presented a mutation in the MECP2 gene, demonstrating that, in males, MECP2 can be responsible for severe mental retardation associated with neurological disorders.


Oxidative Medicine and Cellular Longevity | 2014

Redox Imbalance and Morphological Changes in Skin Fibroblasts in Typical Rett Syndrome

Cinzia Signorini; Silvia Leoncini; Claudio De Felice; Alessandra Pecorelli; Ilaria Meloni; Francesca Ariani; Francesca Mari; Sonia Amabile; Eugenio Paccagnini; Mariangela Gentile; Giuseppe Belmonte; Gloria Zollo; Giuseppe Valacchi; Thierry Durand; Jean-Marie Galano; Lucia Ciccoli; Alessandra Renieri; Joussef Hayek

Evidence of oxidative stress has been reported in the blood of patients with Rett syndrome (RTT), a neurodevelopmental disorder mainly caused by mutations in the gene encoding the Methyl-CpG-binding protein 2. Little is known regarding the redox status in RTT cellular systems and its relationship with the morphological phenotype. In RTT patients (n = 16) we investigated four different oxidative stress markers, F2-Isoprostanes (F2-IsoPs), F4-Neuroprostanes (F4-NeuroPs), nonprotein bound iron (NPBI), and (4-HNE PAs), and glutathione in one of the most accessible cells, that is, skin fibroblasts, and searched for possible changes in cellular/intracellular structure and qualitative modifications of synthesized collagen. Significantly increased F4-NeuroPs (12-folds), F2-IsoPs (7.5-folds) NPBI (2.3-folds), 4-HNE PAs (1.48-folds), and GSSG (1.44-folds) were detected, with significantly decreased GSH (−43.6%) and GSH/GSSG ratio (−3.05 folds). A marked dilation of the rough endoplasmic reticulum cisternae, associated with several cytoplasmic multilamellar bodies, was detectable in RTT fibroblasts. Colocalization of collagen I and collagen III, as well as the percentage of type I collagen as derived by semiquantitative immunofluorescence staining analyses, appears to be significantly reduced in RTT cells. Our findings indicate the presence of a redox imbalance and previously unrecognized morphological skin fibroblast abnormalities in RTT patients.


American Journal of Medical Genetics | 2003

Study of MECP2 gene in Rett syndrome variants and autistic girls.

Michele Zappella; Ilaria Meloni; Ilaria Longo; Roberto Canitano; Giuseppe Hayek; Lucia Rosaia; Francesca Mari; Alessandra Renieri

Mutations in MECP2 gene account for approximately 80% of cases of Rett syndrome (RTT), an X‐linked severe developmental disorder affecting young girls, as well as for most cases of Preserved Speech Variant (PSV), a mild RTT variant in which autistic behavior is common. The aim of this study is to determine whether MECP2 mutations are responsible for PSV only or may cause other forms of autistic disorders. We screened for mutations by SSCP 19 girls with a clinical diagnosis of autism, two of them fulfilling the PSV criteria. A pathogenic mutation was found only in the latter two cases (R133C and R453X). A long follow‐up of these two girls revealed a unique clinical course. They initially developed the first three stages of RTT, they were severely retarded and had autistic behavior. Over the years their abilities increased progressively and by early adolescence they lost autistic behavior, becoming adequately accustomed to people and reaching an IQ close to 45. These results confirm previous clinical studies suggesting that a wide spectrum of RTT exists including girls with mental abilities considerably higher than in classic RTT. We conclude that MECP2 mutations (missense or late truncating) can be found in girls with an IQ close to 45 and a clinical history of PSV of Rett syndrome. Furthermore, MECP2 mutations are not found in patients in which autism remains stable over the years.


European Journal of Human Genetics | 2011

iPS cells to model CDKL5-related disorders

Mariangela Amenduni; Roberta De Filippis; Aaron Y. L. Cheung; Vittoria Disciglio; Maria Carmela Epistolato; Francesca Ariani; Francesca Mari; Maria Antonietta Mencarelli; Youssef Hayek; Alessandra Renieri; James D. Ellis; Ilaria Meloni

Rett syndrome (RTT) is a progressive neurologic disorder representing one of the most common causes of mental retardation in females. To date mutations in three genes have been associated with this condition. Classic RTT is caused by mutations in the MECP2 gene, whereas variants can be due to mutations in either MECP2 or FOXG1 or CDKL5. Mutations in CDKL5 have been identified both in females with the early onset seizure variant of RTT and in males with X-linked epileptic encephalopathy. CDKL5 is a kinase protein highly expressed in neurons, but its exact function inside the cell is unknown. To address this issue we established a human cellular model for CDKL5-related disease using the recently developed technology of induced pluripotent stem cells (iPSCs). iPSCs can be expanded indefinitely and differentiated in vitro into many different cell types, including neurons. These features make them the ideal tool to study disease mechanisms directly on the primarily affected neuronal cells. We derived iPSCs from fibroblasts of one female with p.Q347X and one male with p.T288I mutation, affected by early onset seizure variant and X-linked epileptic encephalopathy, respectively. We demonstrated that female CDKL5-mutated iPSCs maintain X-chromosome inactivation and clones express either the mutant CDKL5 allele or the wild-type allele that serve as an ideal experimental control. Array CGH indicates normal isogenic molecular karyotypes without detection of de novo CNVs in the CDKL5-mutated iPSCs. Furthermore, the iPS cells can be differentiated into neurons and are thus suitable to model disease pathogenesis in vitro.


Journal of Molecular Medicine | 2001

Mutation analysis of the MECP2 gene in British and Italian Rett syndrome females

Marcella Vacca; Francesco Filippini; Alberta Budillon; Valeria Rossi; Grazia Mercadante; Elisa Manzati; Francesca Gualandi; Stefania Bigoni; Cecilia Trabanelli; Giorgio Pini; Elisa Calzolari; Alessandra Ferlini; Ilaria Meloni; Giuseppe Hayek; Michele Zappella; Alessandra Renieri; Michele D'Urso; Maurizio D'Esposito; Fiona Macdonald; Alison Kerr; Seema Dhanjal; Maj A. Hultén

Abstract. Rett syndrome is an X-linked dominant neurological disorder, which appears to be the commonest genetic cause of profound combined intellectual and physical disability in Caucasian females. Recently, this syndrome has been associated with mutations of the MECP2 gene, a transcriptional repressor of still unknown target genes. Here we report a detailed mutational analysis of 62 patients from UK and Italian archives, representing the first comparative study among different populations and one of the largest number of cases so far analyzed. We review the literature on MECP2 mutations in Rett syndrome. This analysis has permitted us to produce a map of the recurrent mutations identified in this and previous studies. Bioinformatic analysis of the mutations, taking advantage of structural and evolutionary data, leads us to postulate the existence of a new functional domain in the MeCP2 protein, which is conserved among brain-specific regulatory factors.


American Journal of Medical Genetics Part A | 2008

A 3 Mb deletion in 14q12 causes severe mental retardation, mild facial dysmorphisms and Rett-like features.

Filomena Tiziana Papa; Maria Antonietta Mencarelli; Rossella Caselli; Eleni Katzaki; Katia Sampieri; Ilaria Meloni; Francesca Ariani; Ilaria Longo; Angela Maggio; Paolo Balestri; Salvatore Grosso; Maria Angela Farnetani; Rosario Berardi; Francesca Mari; Alessandra Renieri

The present report describes a 7‐year‐old girl with a de novo 3 Mb interstitial deletion of chromosome 14q12, identified by oligo array‐CGH. The region is gene poor and contains only five genes two of them, FOXG1B and PRKD1 being deleted also in a previously reported case with a very similar phenotype. Both patients present prominent metopic suture, epicanthic folds, bulbous nasal tip, tented upper lip, everted lower lip and large ears and a clinical course like Rett syndrome, including normal perinatal period, postnatal microcephaly, seizures, and severe mental retardation. FOXG1B (forkhead box G1B) is a very intriguing candidate gene since it is known to promote neuronal progenitor proliferation and to suppress premature neurogenesis and its disruption is reported in a patient with postnatal microcephaly, corpus callosum agenesis, seizures, and severe mental retardation.


PLOS ONE | 2013

Revealing the Complexity of a Monogenic Disease: Rett Syndrome Exome Sequencing

Elisa Grillo; Caterina Lo Rizzo; Laura Bianciardi; Veronica Bizzarri; Margherita Baldassarri; Ottavia Spiga; Simone Furini; Claudio De Felice; Cinzia Signorini; Silvia Leoncini; Alessandra Pecorelli; Lucia Ciccoli; Maria Antonietta Mencarelli; Joussef Hayek; Ilaria Meloni; Francesca Ariani; Francesca Mari; Alessandra Renieri

Rett syndrome (OMIM#312750) is a monogenic disorder that may manifest as a large variety of phenotypes ranging from very severe to mild disease. Since there is a weak correlation between the mutation type in the Xq28 disease-gene MECP2/X-inactivation status and phenotypic variability, we used this disease as a model to unveil the complex nature of a monogenic disorder. Whole exome sequencing was used to analyze the functional portion of the genome of two pairs of sisters with Rett syndrome. Although each pair of sisters had the same MECP2 (OMIM*300005) mutation and balanced X-inactivation, one individual from each pair could not speak or walk, and had a profound intellectual deficit (classical Rett syndrome), while the other individual could speak and walk, and had a moderate intellectual disability (Zappella variant). In addition to the MECP2 mutation, each patient has a group of variants predicted to impair protein function. The classical Rett girls, but not their milder affected sisters, have an enrichment of variants in genes related to oxidative stress, muscle impairment and intellectual disability and/or autism. On the other hand, a subgroup of variants related to modulation of immune system, exclusive to the Zappella Rett patients are driving toward a milder phenotype. We demonstrate that genome analysis has the potential to identify genetic modifiers of Rett syndrome, providing insight into disease pathophysiology. Combinations of mutations that affect speaking, walking and intellectual capabilities may represent targets for new therapeutic approaches. Most importantly, we demonstrated that monogenic diseases may be more complex than previously thought.


Journal of Cellular Physiology | 2005

Non‐syndromic X‐linked mental retardation: From a molecular to a clinical point of view

Alessandra Renieri; Chiara Pescucci; Ilaria Longo; Francesca Ariani; Francesca Mari; Ilaria Meloni

This review focuses on the 19 identified genes involved in X‐linked “non‐syndromic” mental retardation (MR) and defines the signaling pathways in which they are involved, focusing on emerging common mechanisms. The majority of proteins are involved in three distinct pathways: (1) Rho GTPases pathway modulating neuronal differentiation and synaptic plasticity; (2) Rab GTPases pathway regulating synaptic vesicle cycling; (3) gene expression regulation. The function of four proteins (ACSL4, AT2, SLC6A8, and SAP102) could not be reconciled to a common pathway. From a clinical point of view, the review discusses whether some common dysmorphic features can be identified even in non‐syndromic MR patients and whether it is correct to maintain the distinction between “non‐syndromic” and “syndromic” MR.


Clinical Genetics | 2003

Chromosome 2 deletion encompassing the MAP2 gene in a patient with autism and Rett-like features

Chiara Pescucci; Ilaria Meloni; Mirella Bruttini; Francesca Ariani; I. Longo; Francesca Mari; Roberto Canitano; Giuseppe Hayek; Michele Zappella; Alessandra Renieri

We present here a unique case of a 14‐year‐old female with autism and some features similar to Rett syndrome (RTT). Genetic analysis demonstrated a large deletion of chromosome 2q instead of a MECP2 mutation. Like a Rett patient, she is dyspraxic and shows frequent hand‐washing stereotypic activities, hyperpnea, and bruxism. Like a preserved speech variant (PSV) of RTT, she is obese, able to speak in second and third persons, frequently echolalic, and has final normal head circumference and autistic behavior. In addition, she has dysmorphic features such as down‐slanting palpebral fissures, low set ears without lobuli, bilateral flat feet, and bilateral syndactyly of the second and third toes, which do not belong to the Rett spectrum. She has a de novo chromosomal deletion in 2q34 of paternal origin. Gene content analysis of the deleted region showed the presence of 47 genes (14 putative and 33 known genes). This region contains some interesting genes such as ADAM23/MDC3, CREB1, KLF7, and MAP2. Because alteration of neuronal maturation, dendritic anomalies, and a decrease in MAP2 immunoreactivity in white matter neurons are well documented in RTT patients, we propose MAP2 gene as a good candidate for the generation of PSV phenotype in this case.

Collaboration


Dive into the Ilaria Meloni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge