Francesca Paino
Seconda Università degli Studi di Napoli
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francesca Paino.
The FASEB Journal | 2013
Virginia Tirino; Vincenzo Desiderio; Francesca Paino; Alfredo De Rosa; Federica Papaccio; Marcella La Noce; Luigi Laino; Francesco De Francesco; Gianpaolo Papaccio
Primary tumors are responsible for 10% of cancer deaths. In most cases, the main cause of mortality is the formation of metastases. Accumulating evidence suggests that a subpopulation of tumor cells with distinct stem‐like properties is responsible for tumor initiation, invasive growth, and metastasis formation. This population is defined as cancer stem cells (CSCs). Existing therapies have enhanced the length of survival after diagnosis of cancer but have completely failed in terms of recovery. CSCs appear to be resistant to chemotherapy, may remain quiescent for extended periods, and have affinity for hypoxic environments. The CSCs can be identified and isolated by different methodologies, including isolation by CSC‐specific cell surface marker expression, detection of side population phenotype by Hoechst 33342 exclusion, assessment of their ability to grow as floating spheres, and aldehyde dehydrogenase (ALDH) activity assay. None of the methods mentioned are exclusively used to isolate the solid tumor CSCs, highlighting the imperative to delineate more specific markers or to use combinatorial markers and methodologies. This review provides an overview of the main characteristics and approaches used to identify, isolate, and characterize CSCs from solid tumors.—Tirino, V., Desiderio, V., Paino, F., De Rosa, A., Papaccio, F., La Noce, M., Laino, L., De Francesco, F., Papaccio, G. Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. FASEB J. 27, 13–24 (2013). www.fasebj.org
The FASEB Journal | 2011
Virginia Tirino; Vincenzo Desiderio; Francesca Paino; Alfredo De Rosa; Federica Papaccio; Flavio Fazioli; Giuseppe Pirozzi; Gianpaolo Papaccio
This study aimed to identify, isolate, and characterize cancer stem cells from human primary sarcomas. We performed cytometric analyses for stemness and differentiation antigens, including CD29, CD34, CD44, CD90, CD117, and CD133, on 21 human primary sarcomas on the day of surgery. From sarcoma biopsies, we obtained 2 chondrosarcoma‐stabilized cell lines and 2 osteosarcoma stabilized cell lines, on which sphere formation, side population profile, stemness gene expression, and in vivo and in vitro assays were performed. All samples expressed the CD133, CD44, and CD29 markers. Therefore, we selected a CD133+ subpopulation from stabilized cell lines that displayed the capacity to grow as sarcospheres able to initiate and sustain tumor growth in nonobese diabetic/severe combined (NOD/SCID) mice, to express stemness genes, including OCT3/4, Nanog, Sox2, and Nestin, and to differentiate into mesenchymal lineages, such as osteoblasts and adipocytes. Our findings show the existence of cancer stem cells in human primary bone sarcomas and highlight CD133 as a pivotal marker for identification of these cells. This may be of primary importance in the development of new therapeutic strategies and new prognostic procedures against these highly aggressive and metastatic tumors.—Tirino, V., Desiderio, V., Paino, F., De Rosa, A, Papaccio, F., Fazioli, F., Pirozzi, G., Papaccio, G. Human primary bone sarcomas contain CD133+ cancer stem cells displaying high tumorigenicity in vivo. FASEB J. 25, 2022‐2030 (2011). www.fasebj.org
PLOS ONE | 2011
Giuseppe Pirozzi; Virginia Tirino; Rosa Camerlingo; Renato Franco; Aantonello La Rocca; Eleonora Liguori; Nicola Martucci; Francesca Paino; Nicola Normanno; Gaetano Rocco
Background Cancer Stem Cells (CSCs) hypothesis asserts that only a small subset of cells within a tumour is capable of both tumour initiation and sustainment. The Epithelial-Mesenchymal Transition (EMT) is an embryonic developmental program that is often activated during cancer invasion and metastasis. The aim of this study is to shed light on the relationship between EMT and CSCs by using LC31 lung cancer primary cell line. Materials and Methods A549 and LC31 cell lines were treated with 2 ng/ml TGFβ-1 for 30 days, and 80 days, respectively. To evaluate EMT, morphological changes were assessed by light microscopy, immunofluorescence and cytometry for following markers: cytokeratins, e-cadherin, CD326 (epithelial markers) and CD90, and vimentin (mesenchymal markers). Moreover, RT-PCR for Slug, Twist and β-catenin genes were performed. On TGFβ-1 treated and untreated LC31 cell lines, we performed stemness tests such as pneumospheres growth and stem markers expression such as Oct4, Nanog, Sox2, c-kit and CD133. Western Blot for CD133 and tumorigenicity assays using NOD/SCID mice were performed. Results TGFβ-1 treated LC31 cell line lost its epithelial morphology assuming a fibroblast-like appearance. The same results were obtained for the A549 cell line (as control). Immunofluorescence and cytometry showed up-regulation of vimentin and CD90 and down-regulation of cytocheratin, e-cadherin and CD326 in TGFβ-1 treated LC31 and A549 cell lines. Slug, Twist and β-catenin m-RNA transcripts were up-regulated in TGFβ-1 treated LC31 cell line confirming EMT. This cell line showed also over-expression of Oct4, Nanog, Sox2 and CD133, all genes of stemness. In addition, in TGFβ-1 treated LC31 cell line, an increased pneumosphere-forming capacity and tumours-forming ability in NOD/SCID mice were detectable. Conclusions The induction of EMT by TGFβ-1 exposure, in primary lung cancer cell line results in the acquisition of mesenchymal profile and in the expression of stem cell markers.
Stem Cells Translational Medicine | 2013
Alessandra Giuliani; Adrian Manescu; Max Langer; Franco Rustichelli; Vincenzo Desiderio; Francesca Paino; Alfredo De Rosa; Luigi Laino; Riccardo d'Aquino; Virginia Tirino; Gianpaolo Papaccio
Mesenchymal stem cells deriving from dental pulp differentiate into osteoblasts capable of producing bone. In previous studies, we extensively demonstrated that, when seeded on collagen I scaffolds, these cells can be conveniently used for the repair of human mandible defects. Here, we assess the stability and quality of the regenerated bone and vessel network 3 years after the grafting intervention, with conventional procedures and in‐line holotomography, an advanced phase‐imaging method using synchrotron radiation that offers improved sensitivity toward low‐absorbing structures. We found that the regenerated tissue from the graft sites was composed of a fully compact bone with a higher matrix density than control human alveolar spongy bone from the same patient. Thus, the regenerated bone, being entirely compact, is completely different from normal alveolar bone. Although the bone regenerated at the graft sites is not of the proper type found in the mandible, it does seem to have a positive clinical impact. In fact, it creates steadier mandibles, may well increase implant stability, and, additionally, may improve resistance to mechanical, physical, chemical, and pharmacological agents.
Journal of Dentistry | 2014
Marcella La Noce; Francesca Paino; Anna Spina; Pasqualina Naddeo; Roberta Montella; Vincenzo Desiderio; Alfredo De Rosa; Gianpaolo Papaccio; Virginia Tirino; Luigi Laino
OBJECTIVES Stem cells have the ability to rescue and/or repair injured tissue. In humans, it is possible to isolate different types of stem cells from the body. Among these, dental pulp stem cells (DPSCs) are relatively easily obtainable and exhibit high plasticity and multipotential capabilities. In particular they represent a gold standard for neural-crest-derived bone reconstruction in humans and can be used for the repair of body defects in low-risk autologous therapeutic strategies. SOURCES An electronic search was conducted on PubMed databases and supplemented with a manual study of relevant references. RESULTS All research described in this review highlight that DPSCs are mesenchymal stem cells that could be used in clinical applications. Unfortunately, very few clinical trials have been reported. Major obstacles imposed on researchers are hindering the translation of potentially effective therapies to the clinic. Both researchers and regulatory institutions need to develop a new approach to this problem, drawing up a new policy for good manufacturing practice (GMP) procedures. We strongly suggest that only general rules be standardized rather than everything. Importantly, this would not have an effect on the safety of patients, but may very well affect the results, which cannot be identical for all patients, due to physiological diversity in the biology of each patient. Alternatively, it would be important to study the role of specific molecules that recruit endogenous stem cells for tissue regeneration. In this way, the clinical use of stem cells could be successfully developed. CONCLUSIONS DPSCs are mesenchymal stem cells that differentiate into different tissues, maintain their characteristics after cryopreservation, differentiate into bone-like tissues when loaded on scaffolds in animal models, and regenerate bone in human grafts. In summary, all data reported up to now should encourage the development of clinical procedures using DPSCs.
Stem Cells | 2014
Francesca Paino; Marcella La Noce; Virginia Tirino; Pasqualina Naddeo; Vincenzo Desiderio; Giuseppe Pirozzi; Alfredo De Rosa; Luigi Laino; Lucia Altucci; Gianpaolo Papaccio
Adult mesenchymal stem cells, such as dental pulp stem cells, are of great interest for cell‐based tissue engineering strategies because they can differentiate into a variety of tissue‐specific cells, above all, into osteoblasts. In recent years, epigenetic studies on stem cells have indicated that specific histone alterations and modifying enzymes play essential roles in cell differentiation. However, although several studies have reported that valproic acid (VPA)—a selective inhibitor of histone deacetylases (HDAC)—enhances osteoblast differentiation, data on osteocalcin expression—a late‐stage marker of differentiation—are limited. We therefore decided to study the effect of VPA on dental pulp stem cell differentiation. A low concentration of VPA did not reduce cell viability, proliferation, or cell cycle profile. However, it was sufficient to significantly enhance matrix mineralization by increasing osteopontin and bone sialoprotein expression. In contrast, osteocalcin levels were decreased, an effect induced at the transcriptional level, and were strongly correlated with inhibition of HDAC2. In fact, HDAC2 silencing with shRNA produced a similar effect to that of VPA treatment on the expression of osteoblast‐related markers. We conclude that VPA does not induce terminal differentiation of osteoblasts, but stimulates the generation of less mature cells. Moreover, specific suppression of an individual HDAC by RNA interference could enhance only a single aspect of osteoblast differentiation, and thus produce selective effects. Stem Cells 2014;32:279–289
Cell Death and Disease | 2013
Virginia Tirino; R Camerlingo; K Bifulco; E Irollo; R Montella; Francesca Paino; G Sessa; M V Carriero; N Normanno; Gaetano Rocco; G Pirozzi
Metastasis is the leading cause of death by cancer. Non-small-cell lung cancer (NSCLC) represents nearly 85% of primary malignant lung tumours. Recent researches have demonstrated that epithelial-to-mesenchymal transition (EMT) plays a key role in the early process of metastasis of cancer cells. Transforming growth factor-β1 (TGF-β1) is the major inductor of EMT. The aim of this study is to investigate TGF-β1’s effect on cancer stem cells (CSCs) identified as cells positive for CD133, side population (SP) and non-cancer stem cells (non-CSCs) identified as cells negative for CD133, and SP in the A549 cell line. We demonstrate that TGF-β1 induces EMT in both CSC and non-CSC A549 sublines, upregulating the expression of mesenchymal markers such as vimentin and Slug, and downregulating levels of epithelial markers such as e-cadherin and cytokeratins. CSC and non-CSC A549 sublines undergoing EMT show a strong migration and strong levels of MMP9 except for the CD133− cell fraction. OCT4 levels are strongly upregulated in all cell fractions except CD133− cells. On the contrary, wound size reveals that TGF-β1 enhances motility in wild-type A549 as well as CD133+ and SP+ cells. For CD133− and SP− cells, TGF-β1 exposure does not change the motility. Finally, assessment of growth kinetics reveals major colony-forming efficiency in CD133+ A549 cells. In particular, SP+ and SP− A549 cells show more efficiency to form colonies than untreated corresponding cells, while for CD133− cells no change in colony number was observable after TGF-β1 exposure. We conclude that it is possible to highlight different cell subpopulations with different grades of stemness. Each population seems to be involved in different biological mechanisms such as stemness maintenance, tumorigenicity, invasion and migration.
Stem Cell Reviews and Reports | 2011
Virginia Tirino; Francesca Paino; Riccardo d’Aquino; Vincenzo Desiderio; Alfredo De Rosa; Gianpaolo Papaccio
Dental pulp stem cells (DPSCs), originating from neural crests, can be found within dental pulp. Up to now, it has been demonstrated that these cells are capable of producing bone tissue, both in vitro and in vivo and differentiate into adipocytes, endotheliocytes, melanocytes, neurons, glial cells, and can be easily cryopreserved and stored. Moreover, recent attention has been focused on tissue engineering and on the properties of these cells. In addition, adult bone tissue with good vascularisation has been obtained in grafts. The latest use in clinical trials for bone repair enforces the notion that DPSCs can be used successfully in patients. Therefore, their isolation, selection, differentiation and banking is of great importance. The isolation and detection techniques used in most laboratories are based on the use of antibodies revealed by flow-cytometers with cell sorter termed FACS (fluorescent activated cell sorter). In this report, we focus our attention on the main procedures used in the selection of DPSCs by flow cytometry, cell culture, freezing/thawing, cell cycle evaluation, histochemistry/immunofluorescence and differentiation of DPSCs. In addition, new methods/protocols to select and isolate stem cells without staining by fluorescent markers for implementation in biomedical/clinical laboratories are discuss. We emphasize that the new methods must address simplicity and short times of preparation and use of samples, complete sterility of cells, the potential disposable, low cost and complete maintenance of the viability and integrity of the cells with real-time response for subsequent applications in the biomedical/clinical/surgical fields.
PLOS ONE | 2011
Carlo Mangano; Francesca Paino; Riccardo d'Aquino; Alfredo De Rosa; Giovanna Iezzi; Adriano Piattelli; Luigi Laino; Thimios A. Mitsiadis; Vincenzo Desiderio; Francesco Mangano; Gianpaolo Papaccio; Virginia Tirino
The aim of this study was to evaluate the behavior of human Dental Pulp Stem Cells (DPSCs), as well as human osteoblasts, when challenged on a Biocoral scaffold, which is a porous natural hydroxyapatite. For this purpose, human DPSCs were seeded onto a three-dimensional (3D) Biocoral scaffold or on flask surface (control). Either normal or rotative (3D) cultures were performed. Scanning electron microscopic analyses, at 8, 24 and 48 h of culture showed that cells did not adhere on the external surface, but moved into the cavities inside the Biocoral structure. After 7, 15 and 30 days of culture, morphological and molecular analyses suggested that the Biocoral scaffold leads DPSCs to hook into the cavities where these cells quickly start to secrete the extra cellular matrix (ECM) and differentiate into osteoblasts. Control human osteoblasts also moved into the internal cavities where they secreted the ECM. Histological sections revealed a diffuse bone formation inside the Biocoral samples seeded with DPSCs or human osteoblasts, where the original scaffold and the new secreted biomaterial were completely integrated and cells were found within the remaining cavities. In addition, RT-PCR analyses showed a significant increase of osteoblast-related gene expression and, above all, of those genes highly expressed in mineralized tissues, including osteocalcin, OPN and BSP. Furthermore, the effects on the interaction between osteogenesis and angiogenesis were observed and substantiated by ELISA assays. Taken together, our results provide clear evidence that DPSCs differentiated into osteoblasts, forming a biocomplex made of Biocoral, ECM and differentiated cells.
Journal of Cellular Physiology | 2013
Vincenzo Desiderio; Francesco De Francesco; Chiara Schiraldi; Alfredo De Rosa; Annalisa La Gatta; Francesca Paino; Riccardo d'Aquino; Giuseppe A. Ferraro; Virginia Tirino; Gianpaolo Papaccio
Mesenchymal stem cell (MSC) therapy holds promise for treating diseases and tissue repair. Regeneration of skeletal muscle tissue that is lost during pathological muscle degeneration or after injuries is sustained by the production of new myofibers. Human Adipose stem cells (ASCs) have been reported to regenerate muscle fibers and reconstitute the pericytic cell pool after myogenic differentiation in vitro. Our aim was to evaluate the differentiation potential of constructs made from a new cross‐linked hyaluronic acid (XHA) scaffold on which different sorted subpopulations of ASCs were loaded. Thirty days after engraftment in mice, we found that NG2+ ASCs underwent a complete myogenic differentiation, fabricating a human skeletal muscle tissue, while NG2− ASCs merely formed a human adipose tissue. Myogenic differentiation was confirmed by the expression of MyoD, MF20, laminin, and lamin A/C by immunofluorescence and/or RT‐PCR. In contrast, adipose differentiation was confirmed by the expression of adiponectin, Glut‐4, and PPAR‐γ. Both tissues formed expressed Class I HLA, confirming their human origin and excluding any contamination by murine cells. In conclusion, our study provides novel evidence that NG2+ ASCs loaded on XHA scaffolds are able to fabricate a human skeletal muscle tissue in vivo without the need of a myogenic pre‐differentiation step in vitro. We emphasize the translational significance of our findings for human skeletal muscle regeneration. J. Cell. Physiol. 228: 1762–1773, 2013.