Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Riccardo d'Aquino is active.

Publication


Featured researches published by Riccardo d'Aquino.


Journal of Bone and Mineral Research | 2005

A New Population of Human Adult Dental Pulp Stem Cells: A Useful Source of Living Autologous Fibrous Bone Tissue (LAB)†

Gregorio Laino; Riccardo d'Aquino; Antonio Graziano; Vladimiro Lanza; Francesco Carinci; Fabio Naro; Giuseppe Pirozzi; Gianpaolo Papaccio

Stem cells, derived from human adult dental pulp of healthy subjects 30‐45 years of age, were cultured, and cells were selected using a FACSorter. A new c‐kit+/CD34+/CD45− cell population of stromal bone producing cells (SBP/DPSCs) was selected, expanded, and cultured. These SBP/DPSCs are highly clonogenic and, in culture, differentiate into osteoblast precursors (CD44+/RUNX‐2+), still capable of self‐renewing, and then in osteoblasts, producing, in vitro, a living autologous fibrous bone (LAB) tissue, which is markedly positive for several bone antibodies. This tissue constitute an ideal source of osteoblasts and mineralized tissue for bone regeneration. In fact, after in vivo transplantation into immunocompromised rats, LAB formed lamellar bone‐containing osteocytes.


PLOS ONE | 2008

Detection and Characterization of CD133 + Cancer Stem Cells in Human Solid Tumours

Virginia Tirino; Vincenzo Desiderio; Riccardo d'Aquino; Francesco De Francesco; Giuseppe Pirozzi; Umberto Galderisi; Carlo Cavaliere; Alfredo De Rosa; Gianpaolo Papaccio

Background Osteosarcoma is the most common primary tumour of bone. Solid tumours are made of heterogeneous cell populations, which display different goals and roles in tumour economy. A rather small cell subset can hold or acquire stem potentials, gaining aggressiveness and increasing expectancy of recurrence. The CD133 antigen is a pentaspan membrane glycoprotein, which has been proposed as a cancer stem cell marker, since it has been previously demonstrated to be capable of identifying a cancer initiating subpopulation in brain, colon, melanoma and other solid tumours. Therefore, our aim was to observe the possible presence of cells expressing the CD133 antigen within solid tumour cell lines of osteosarcoma and, then, understand their biological characteristics and performances. Methodology and Principal Findings In this study, using SAOS2, MG63 and U2OS, three human sarcoma cell lines isolated from young Caucasian subjects, we were able to identify and characterize, among them, CD133+ cells showing the following features: high proliferation rate, cell cycle detection in a G2\M phase, positivity for Ki-67, and expression of ABCG2 transporters. In addition, at the FACS, we were able to observe the CD133+ cell fraction showing side population profile and forming sphere-clusters in serum-free medium with a high clonogenic efficiency. Conclusions Taken together, our findings lead to the thought that we can assume that we have identified, for the first time, CD133+ cells within osteosarcoma cell lines, showing many features of cancer stem cells. This can be of rather interest in order to design new therapies against the bone cancer.


Journal of Cellular Physiology | 2006

Long-term cryopreservation of dental pulp stem cells (SBP-DPSCs) and their differentiated osteoblasts: A cell source for tissue repair

Gianpaolo Papaccio; Antonio Graziano; Riccardo d'Aquino; Maria Francesca Graziano; Giuseppe Pirozzi; Dardo Menditti; Alfredo De Rosa; Francesco Carinci; Gregorio Laino

It is not known whether cells derived from stem cells retain their differentiation and morpho‐functional properties after long‐term cryopreservation. This information is of importance to evaluate their potential for long‐term storage with a view to subsequent use in therapy. Here, we describe the morpho‐functional properties of dental pulp stem cells (SBP‐DPSCs), and of their differentiated osteoblasts, recovered after long‐term cryopreservation. After storage for 2 years, we found that stem cells are still capable of differentiation, and that their differentiated cytotypes proliferate and produce woven bone tissue. In addition, cells still express all their respective surface antigens, confirming cellular integrity. In particular, SBP‐DPSCs differentiated into pre‐osteoblasts, showing diffuse positivity for ALP, BAP, RUNX‐2, and calcein. Recovered osteoblasts expressed bone‐specific markers and were easily recognizable ultrastructurally, with no alterations observed at this level. In addition, after in vivo transplantation, woven bone converted into a 3D lamellar bone type. Therefore, dental pulp stem cells and their osteoblast‐derived cells can be long‐term cryopreserved and may prove to be attractive for clinical applications. J. Cell. Physiol. 208: 319–325, 2006.


Journal of Cellular Physiology | 2006

An approachable human adult stem cell source for hard‐tissue engineering

Gregorio Laino; Antonio Graziano; Riccardo d'Aquino; Giuseppe Pirozzi; Vladimiro Lanza; Salvatore Valiante; Alfredo De Rosa; Fabio Naro; Elisabetta Vivarelli; Gianpaolo Papaccio

Stem cells were obtained from deciduous dental pulp of healthy subjects, aged 6–10 years. This stem cell population was cultured, expanded, and specifically selected, detecting using a FACsorter, c‐kit, CD34, and STRO‐1 antigen expression. Then, c‐kit+/CD34+/STRO‐1+cells were replaced in the culture medium added of 20% FBS, leading to osteoblast differentiation. In fact, these cells, after a week, showed a large positivity for CD44, osteocalcin, and RUNX‐2 markers. To achieve an adipocytic differentiation, cells, after sorting, were challenged with dexamethason 10−8 mM in the same culture medium. To obtain myotube fusion, sorted cells were co‐cultured in ATCC medium with mouse myogenic C2C12 cells and, after a week, human stem cell nuclei were found to be able to fuse, forming myotubes. Differentiated osteoblasts, as assessed by a large positivity to several specific antibodies, after 30 days of culture and already in vitro, started to secrete an extracellular mineralized matrix, which, 2 weeks later, built a considerable number of 3D woven bone samples, which showed a strong positivity to alkaline phosphatase (ALP), alizarin red, calcein, other than to specific antibodies. These bone samples, after in vivo transplantation into immunosuppressed rats, were remodeled in a lamellar bone containing entrapped osteocytes. Therefore, this study provides strong evidence that human deciduous dental pulp is an approachable “niche” of stromal stem cells, and that it is an ideal source of osteoblasts, as well as of mineralized tissue, ready for bone regeneration, transplantation, and tissue‐based clinical therapies.


Journal of Craniofacial Surgery | 2006

In vitro bone production using stem cells derived from human dental pulp.

Gregorio Laino; Francesco Carinci; Antonio Graziano; Riccardo d'Aquino; Vladimiro Lanza; Alfredo De Rosa; Fernando Gombos; Filippo Caruso; Luigi Guida; Rosario Rullo; Dardo Menditti; Gianpaolo Papaccio

To harvest bone for autologous grafting is a daily problem encountered by craniofacial and oral surgeons. Stem cells derived from human dental pulp are able to differentiate in osteoblasts and are a potential source of autologous bone produced in vitro. The authors describe their preliminary results in this new field with its potential application in craniomaxillofacial surgery. Dental pulp was gently extracted from 34 human permanent teeth (all third molars) of patients 19 to 37 years of age. After they were digested, the cells were selected using a cytometer for c-kit, STRO-1, CD34, CD45, and then for CD44 and RUNX-2. This study, made on a considerable number of cases, provided evidence that dental pulp is extremely rich in stem cells, which were c-kit+/CD34+/STRO-1+/CD45−, capable of differentiation toward several stromal-derived differentiated cells and mainly osteoblasts. These findings, supported by the large number of cases, are of great interest for tissue regeneration, tissue-based clinical therapies, and transplantation.


Journal of Cellular Physiology | 2008

Scaffold's Surface Geometry Significantly Affects Human Stem Cell Bone Tissue Engineering

Antonio Graziano; Riccardo d'Aquino; Maria Gabriella Cusella De Angelis; Francesco De Francesco; Antonio Giordano; Gregorio Laino; Adriano Piattelli; Tonino Traini; Alfredo De Rosa; Gianpaolo Papaccio

In this study, we have observed dental pulp stem cells (SBP‐DPSCs) performances on different scaffolds, such as PLGA 85:15, hydroxyapatite chips (HA) and titanium. Stem cells were challenged with each engineered surface, either in plane cultures or in a rotating apparatus, for a month. Gingival fibroblasts were used as controls. Results showed that stem cells exerted a different response, depending on the different type of textured surface: in fact, microconcavities significantly affected SBP‐DPSC differentiation into osteoblasts, both temporally and quantitatively, with respect to the other textured surfaces. Actually, stem cells challenged with concave surfaces differentiated quicker and showed nuclear polarity, an index of secretion, cellular activity and matrix formation. Moreover, bone‐specific proteins were significantly expressed and the obtained bone tissue was of significant thickness. Thus, cells cultured on the concave textured surface had better cell‐scaffold interactions and were induced to secrete factors that, due to their autocrine effects, quickly lead to osteodifferentiation, bone tissue formation, and vascularization. The worst cell performance was obtained using convex surfaces, due to the scarce cell proliferation on to the scaffold and the poor matrix secretion. In conclusion, this study stresses that for a suitable and successful bone tissue reconstruction the surface texture is of paramount importance. J. Cell. Physiol. 214:166–172, 2008.


Biomaterials | 2010

The osteoblastic differentiation of dental pulp stem cells and bone formation on different titanium surface textures.

Carlo Mangano; Alfredo De Rosa; Vincenzo Desiderio; Riccardo d'Aquino; Adriano Piattelli; Francesco De Francesco; Virginia Tirino; Francesco Mangano; Gianpaolo Papaccio

Bone Tissue Engineering (BTE) and Dental Implantology (DI) require the integration of implanted structures, with well characterized surfaces, in bone. In this work we have challenged acid-etched titanium (AET) and Laser Sintered Titanium (LST) surfaces with either human osteoblasts or stem cells from human dental pulps (DPSCs), to understand their osteointegration and clinical use capability of derived implants. DPSCs and human osteoblasts were challenged with the two titanium surfaces, either in plane cultures or in a roller apparatus within a culture chamber, for hours up to a month. During the cultures cells on the titanium surfaces were examined for histology, protein secretion and gene expression. Results show that a complete osteointegration using human DPSCs has been obtained: these cells were capable to quickly differentiate into osteoblasts and endotheliocytes and, then, able to produce bone tissue along the implant surfaces. Osteoblast differentiation of DPSCs and bone morphogenetic protein production was obtained in a better and quicker way, when challenging stem cells with the LST surfaces. This successful BTE in a comparatively short time gives interesting data suggesting that LST is a promising alternative for clinical use in DI.


Stem Cells Translational Medicine | 2013

Three Years After Transplants in Human Mandibles, Histological and In-Line Holotomography Revealed That Stem Cells Regenerated a Compact Rather Than a Spongy Bone: Biological and Clinical Implications

Alessandra Giuliani; Adrian Manescu; Max Langer; Franco Rustichelli; Vincenzo Desiderio; Francesca Paino; Alfredo De Rosa; Luigi Laino; Riccardo d'Aquino; Virginia Tirino; Gianpaolo Papaccio

Mesenchymal stem cells deriving from dental pulp differentiate into osteoblasts capable of producing bone. In previous studies, we extensively demonstrated that, when seeded on collagen I scaffolds, these cells can be conveniently used for the repair of human mandible defects. Here, we assess the stability and quality of the regenerated bone and vessel network 3 years after the grafting intervention, with conventional procedures and in‐line holotomography, an advanced phase‐imaging method using synchrotron radiation that offers improved sensitivity toward low‐absorbing structures. We found that the regenerated tissue from the graft sites was composed of a fully compact bone with a higher matrix density than control human alveolar spongy bone from the same patient. Thus, the regenerated bone, being entirely compact, is completely different from normal alveolar bone. Although the bone regenerated at the graft sites is not of the proper type found in the mandible, it does seem to have a positive clinical impact. In fact, it creates steadier mandibles, may well increase implant stability, and, additionally, may improve resistance to mechanical, physical, chemical, and pharmacological agents.


PLOS ONE | 2007

Concave pit-containing scaffold surfaces improve stem cell-derived osteoblast performance and lead to significant bone tissue formation.

Antonio Graziano; Riccardo d'Aquino; Maria Gabriella Cusella De Angelis; Gregorio Laino; Adriano Piattelli; Maurizio Pacifici; Alfredo De Rosa; Gianpaolo Papaccio

Background Scaffold surface features are thought to be important regulators of stem cell performance and endurance in tissue engineering applications, but details about these fundamental aspects of stem cell biology remain largely unclear. Methodology and Findings In the present study, smooth clinical-grade lactide-coglyolic acid 85:15 (PLGA) scaffolds were carved as membranes and treated with NMP (N-metil-pyrrolidone) to create controlled subtractive pits or microcavities. Scanning electron and confocal microscopy revealed that the NMP-treated membranes contained: (i) large microcavities of 80–120 µm in diameter and 40–100 µm in depth, which we termed primary; and (ii) smaller microcavities of 10–20 µm in diameter and 3–10 µm in depth located within the primary cavities, which we termed secondary. We asked whether a microcavity-rich scaffold had distinct bone-forming capabilities compared to a smooth one. To do so, mesenchymal stem cells derived from human dental pulp were seeded onto the two types of scaffold and monitored over time for cytoarchitectural characteristics, differentiation status and production of important factors, including bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF). We found that the microcavity-rich scaffold enhanced cell adhesion: the cells created intimate contact with secondary microcavities and were polarized. These cytological responses were not seen with the smooth-surface scaffold. Moreover, cells on the microcavity-rich scaffold released larger amounts of BMP-2 and VEGF into the culture medium and expressed higher alkaline phosphatase activity. When this type of scaffold was transplanted into rats, superior bone formation was elicited compared to cells seeded on the smooth scaffold. Conclusion In conclusion, surface microcavities appear to support a more vigorous osteogenic response of stem cells and should be used in the design of therapeutic substrates to improve bone repair and bioengineering applications in the future.


PLOS ONE | 2011

Human Dental Pulp Stem Cells Hook into Biocoral Scaffold Forming an Engineered Biocomplex

Carlo Mangano; Francesca Paino; Riccardo d'Aquino; Alfredo De Rosa; Giovanna Iezzi; Adriano Piattelli; Luigi Laino; Thimios A. Mitsiadis; Vincenzo Desiderio; Francesco Mangano; Gianpaolo Papaccio; Virginia Tirino

The aim of this study was to evaluate the behavior of human Dental Pulp Stem Cells (DPSCs), as well as human osteoblasts, when challenged on a Biocoral scaffold, which is a porous natural hydroxyapatite. For this purpose, human DPSCs were seeded onto a three-dimensional (3D) Biocoral scaffold or on flask surface (control). Either normal or rotative (3D) cultures were performed. Scanning electron microscopic analyses, at 8, 24 and 48 h of culture showed that cells did not adhere on the external surface, but moved into the cavities inside the Biocoral structure. After 7, 15 and 30 days of culture, morphological and molecular analyses suggested that the Biocoral scaffold leads DPSCs to hook into the cavities where these cells quickly start to secrete the extra cellular matrix (ECM) and differentiate into osteoblasts. Control human osteoblasts also moved into the internal cavities where they secreted the ECM. Histological sections revealed a diffuse bone formation inside the Biocoral samples seeded with DPSCs or human osteoblasts, where the original scaffold and the new secreted biomaterial were completely integrated and cells were found within the remaining cavities. In addition, RT-PCR analyses showed a significant increase of osteoblast-related gene expression and, above all, of those genes highly expressed in mineralized tissues, including osteocalcin, OPN and BSP. Furthermore, the effects on the interaction between osteogenesis and angiogenesis were observed and substantiated by ELISA assays. Taken together, our results provide clear evidence that DPSCs differentiated into osteoblasts, forming a biocomplex made of Biocoral, ECM and differentiated cells.

Collaboration


Dive into the Riccardo d'Aquino's collaboration.

Top Co-Authors

Avatar

Gianpaolo Papaccio

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Antonio Graziano

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Alfredo De Rosa

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Gregorio Laino

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Virginia Tirino

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Luigi Laino

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Pirozzi

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Vincenzo Desiderio

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesca Paino

Seconda Università degli Studi di Napoli

View shared research outputs
Researchain Logo
Decentralizing Knowledge