Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesca Pellistri is active.

Publication


Featured researches published by Francesca Pellistri.


Journal of Biological Chemistry | 2008

Nonspecific interaction of prefibrillar amyloid aggregates with glutamatergic receptors results in Ca2+ increase in primary neuronal cells.

Francesca Pellistri; Monica Bucciantini; Annalisa Relini; Daniele Nosi; Alessandra Gliozzi; Mauro Robello; Massimo Stefani

It is widely reported that the Ca2+ increase following nonspecific cell membrane permeabilization is among the earliest biochemical modifications in cells exposed to toxic amyloid aggregates. However, more recently receptors with Ca2+ channel activity such as α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), N-methyl d-aspartate (NMDA), ryanodine, and inositol 1,4,5-trisphosphate receptors have been proposed as mediators of the Ca2+ increase in neuronal cells challenged with β-amyloid peptides. We previously showed that prefibrillar aggregates of proteins not associated with amyloid diseases are toxic to exposed cells similarly to comparable aggregates of disease-associated proteins. In particular, prefibrillar aggregates of the prokaryotic HypF-N were shown to be toxic to different cultured cell lines by eliciting Ca2+ and reactive oxygen species increases. This study was aimed at assessing whether NMDA and AMPA receptor activations could be considered a generic feature of cell interaction with amyloid aggregates rather than a specific effect of some aggregated protein. Therefore, we investigated whether NMDA and AMPA receptors were involved in the Ca2+ increase following exposure of rat cerebellar granule cells to HypF-N prefibrillar aggregates. We found that the intracellular Ca2+ increase was associated with the early activation of NMDA and AMPA receptors, although some nonspecific membrane permeabilization was also observed at longer times of exposure. This result matched a significant co-localization of the aggregates with both receptors on the plasma membrane. Our data support the possibility that glutamatergic channels are generic sites of interaction with the cell membrane of prefibrillar aggregates of different peptides and proteins as well as the key structures responsible for the resulting early membrane permeabilization to Ca2+.


Glia | 2007

ERK1/2 and p38 MAP Kinases Control Prion Protein Fragment 90-231-Induced Astrocyte Proliferation and Microglia Activation

Stefano Thellung; Valentina Villa; Alessandro Corsaro; Francesca Pellistri; Valentina Venezia; Claudio Russo; Antonio Aceto; Mauro Robello; Tullio Florio

Astrogliosis and microglial activation are a common feature during prion diseases, causing the release of chemoattractant and proinflammatory factors as well as reactive free radicals, involved in neuronal degeneration. The recombinant protease‐resistant domain of the prion protein (PrP90–231) displays in vitro neurotoxic properties when refolded in a β‐sheet‐rich conformer. Here, we report that PrP90–231 induces the secretion of several cytokines, chemokines, and nitric oxide (NO) release, in both type I astrocytes and microglial cells. PrP90–231 elicited in both cell types the activation of ERK1/2 MAP kinase that displays, in astrocytes, a rapid kinetics and a proliferative response. Conversely, in microglia, PrP90–231‐dependent MAP kinase activation was delayed and long lasting, inducing functional activation and growth arrest. In microglial cells, NO release, dependent on the expression of the inducible NO synthase (iNOS), and the secretion of the chemokine CCL5 were Ca2+ dependent and under the control of the MAP kinases ERK1/2 and p38: ERK1/2 inhibition, using PD98059, reduced iNOS expression, while p38 blockade by PD169316 inhibited CCL5 release. In summary, we demonstrate that glial cells are activated by extracellular misfolded PrP90–231 resulting in a proliferative/secretive response of astrocytes and functional activation of microglia, both dependent on MAP kinase activation. In particular, in microglia, PrP90–231 activated a complex signalling cascade involved in the regulation of NO and chemokine release. These data argue in favor of a causal role for misfolded prion protein in sustaining glial activation and, possibly, glia‐mediated neuronal death.


Neuroscience Letters | 2007

Only high concentrations of ethanol affect GABAA receptors of rat cerebellum granule cells in culture

Silvia Casagrande; A. Cupello; Francesca Pellistri; Mauro Robello

In the experiments described in the present report, we evaluated the effects of ethanol on the activity of GABAA receptors of cerebellar granule cells in culture. Only very high ethanol concentrations (100-300 mM) showed a clear and significant stimulatory effect on the activity of such receptors. This result was unexpected. In fact, previous reports from other groups would have suggested high ethanol sensitivity of at least one population of GABAA receptors expressed by granule cells.


Biochimica et Biophysica Acta | 2013

Different ataxin-3 amyloid aggregates induce intracellular Ca2+ deregulation by different mechanisms in cerebellar granule cells

Francesca Pellistri; Monica Bucciantini; Gaetano Invernizzi; Elena Gatta; Amanda Penco; Anna Maria Frana; Daniele Nosi; Annalisa Relini; Maria Elena Regonesi; Alessandra Gliozzi; Paolo Tortora; Mauro Robello; Massimo Stefani

This work aims at elucidating the relation between morphological and physicochemical properties of different ataxin-3 (ATX3) aggregates and their cytotoxicity. We investigated a non-pathological ATX3 form (ATX3Q24), a pathological expanded form (ATX3Q55), and an ATX3 variant truncated at residue 291 lacking the polyQ expansion (ATX3/291Δ). Solubility, morphology and hydrophobic exposure of oligomeric aggregates were characterized. Then we monitored the changes in the intracellular Ca(2+) levels and the abnormal Ca(2+) signaling resulting from aggregate interaction with cultured rat cerebellar granule cells. ATX3Q55, ATX3/291Δ and, to a lesser extent, ATX3Q24 oligomers displayed similar morphological and physicochemical features and induced qualitatively comparable time-dependent intracellular Ca(2+) responses. However, only the pre-fibrillar aggregates of expanded ATX3 (the only variant which forms bundles of mature fibrils) triggered a characteristic Ca(2+) response at a later stage that correlated with a larger hydrophobic exposure relative to the two other variants. Cell interaction with early oligomers involved glutamatergic receptors, voltage-gated channels and monosialotetrahexosylganglioside (GM1)-rich membrane domains, whereas cell interaction with more aged ATX3Q55 pre-fibrillar aggregates resulted in membrane disassembly by a mechanism involving only GM1-rich areas. Exposure to ATX3Q55 and ATX3/291Δ aggregates resulted in cell apoptosis, while ATX3Q24 was substantially innocuous. Our findings provide insight into the mechanisms of ATX3 aggregation, aggregate cytotoxicity and calcium level modifications in exposed cerebellar cells.


The International Journal of Biochemistry & Cell Biology | 2016

A critical concentration of N-terminal pyroglutamylated amyloid beta drives the misfolding of Ab1-42 into more toxic aggregates

Denise Galante; Francesco Simone Ruggeri; Giovanni Dietler; Francesca Pellistri; Elena Gatta; Alessandro Corsaro; Tullio Florio; Angelo Perico; Cristina D’Arrigo

A wide consensus based on robust experimental evidence indicates pyroglutamylated amyloid-β isoform (AβpE3-42) as one of the most neurotoxic peptides involved in the onset of Alzheimers disease. Furthermore, AβpE3-42 co-oligomerized with excess of Aβ1-42, produces oligomers and aggregates that are structurally distinct and far more cytotoxic than those made from Aβ1-42 alone. Here, we investigate quantitatively the influence of AβpE3-42 on biophysical properties and biological activity of Aβ1-42. We tested different ratios of AβpE3-42/Aβ1-42 mixtures finding a correlation between the biological activity and the structural conformation and morphology of the analyzed mixtures. We find that a mixture containing 5% AβpE3-42, induces the highest disruption of intracellular calcium homeostasis and the highest neuronal toxicity. These data correlate to an high content of relaxed antiparallel β-sheet structure and the coexistence of a population of big spheroidal aggregates together with short fibrils. Our experiments provide also evidence that AβpE3-42 causes template-induced misfolding of Aβ1-42 at ratios below 33%. This means that there exists a critical concentration required to have seeding on Aβ1-42 aggregation, above this threshold, the seed effect is not possible anymore and AβpE3-42 controls the total aggregation kinetics.


American Journal of Physics | 2004

Gabor’s hologram in a modern perspective

L. Repetto; Francesca Pellistri; E. Piano; C. Pontiggia

We review Dennis Gabor’s early results in light of more than fifty years of technological achievements, including the advent of CCD cameras and fast computers. By applying digital reading to one of the first holograms, we demonstrate the continuity between the classical technique and the digital implementation. This experiment can be used as a demonstration without needing the instrumentation of an optics laboratory.


Neuroscience | 2009

GABAA receptors of cerebellar granule cells in culture: explanation of overall insensitivity to ethanol

Elena Gatta; A. Cupello; Francesca Pellistri; Mauro Robello

GABA-activated chloride currents were studied in cerebellar granule cells put in culture from neonatal rats. As previously described, 10 microM GABA perfusion of these cells recorded by whole cell patch-clamp elicits chloride currents displaying a peak and a steady-state component. The two components were studied in the presence of 1 mM furosemide, 1 microM Zn(2+) and a combination of the two in order to evaluate the contribution of the different types of GABA(A) receptors. Furosemide inhibits alpha(6) containing receptors whereas low levels of Zn(2+) specifically block incomplete GABA(A) receptors made up of alpha and beta subunits only. The results show that the peak component involves the following receptors: alpha(x) beta(y), 25%; alpha(1) beta(y) gamma(2), 45%; alpha(6) beta(y) gamma(2) plus alpha(1) alpha(6) beta(y) gamma(2), 30%. The steady state component is made up by alpha(x) beta(y), 38%; alpha(1) beta(y) delta, 62%. Ethanol at relatively high concentration, 100 mM, slows further down the desensitization of alpha(1) beta(y) delta receptors. The results indicate that the relative insensitivity to ethanol of GABA(A) receptors of neonatal cerebellar granule cells in culture is due to the absence of mature alpha(6) beta(y) delta receptors, a major receptor brand involved in tonic inhibition.


Neuroreport | 2004

Two-photon imaging of calcium accumulation in rat cerebellar granule cells.

Francesca Pellistri; A. Cupello; Alessandro Esposito; Carla Marchetti; Mauro Robello

Topical accumulation of calcium ions in neurites and cell bodies of rat cerebellar granule cells was studied by two-photon microscopy in neurons loaded with the Ca-sensitive fluorescent indicator Oregon Green 488 Bapta. High potassium caused a rapid surge of internal calcium ([Ca2+]i) in the cell body, followed by a plateau. In neurites, [Ca2+]i reached a peak and then decreased back to the control level. In contrast, in neurons stimulated by NMDA, [Ca2+]i reached a steady level and remained constant as long as the agonist was present in the bath, either in the cell bodies or in neurites. In the latter, the response to NMDA treatment was smaller and heterogeneous, and [Ca2+]i increased in certain segments of the neurite, but not in others.


Journal of Molecular Neuroscience | 2015

Study of the Interaction of 1,4- and 1,5-Benzodiazepines with GABAA Receptors of Rat Cerebellum Granule Cells in Culture

Periklis Nikas; Elena Gatta; A. Cupello; Mario Di Braccio; Giancarlo Grossi; Francesca Pellistri; Mauro Robello

The effects of a classical 1,4-benzodiazepine agonist, such as diazepam, its catabolite N-desmethyl-diazepam (nordiazepam), and 1,5-benzodiazepines such as clobazam and RL 214 (a triazolobenzodiazepine previously synthesized in our labs) were evaluated on native GABAA receptors of cerebellar granule cells in culture. The parameter studied was the increase of GABA-activated chloride currents caused by these substances. The contributions of α6 β2/3 γ2 and α1 α6 β2/3 γ2 receptor subtypes to the increase of GABA-activated chloride current were investigated by comparing the effects of such substances in the presence vs. the absence of furosemide. Furosemide is in fact able to block such receptors. It was found that the percent enhancement of peak GABA-activated current doubled for diazepam, clobazam, and RL 214. However, it did not change for N-desmethyl-diazepam. These results indicate that diazepam, clobazam, and RL 214 interact exclusively with α1 β2/3 γ2 receptors, while N-desmethyl-diazepam seems to interact with not only α1- but also α6-containing receptors.


Neurochemical Research | 2013

GABAA Receptors of Cerebellar Granule Cells in Culture: Interaction with Benzodiazepines.

A. Cupello; Mario Di Braccio; Elena Gatta; Giancarlo Grossi; Periklis Nikas; Francesca Pellistri; Mauro Robello

GABAA receptor mediated inhibition plays an important role in modulating the input/output dynamics of cerebellum. A characteristic of cerebellar GABAA receptors is the presence in cerebellar granule cells of subunits such as α6 and δ which give insensitivity to classical benzodiazepines. In fact, cerebellar GABAA receptors have generally been considered a poor model for testing drugs which potentially are active at the benzodiazepine site. In this overview we show how rat cerebellar granule cells in culture may be a useful model for studying new benzodiazepine site agonists. This is based on the pharmacological separation of diazepam-sensitive α1 β2/3 γ2 receptors from those which are diazepam-insensitive and contain the α6 subunit. This is achieved by utilizing furosemide/Zn2+ which block α6 containing and incomplete receptors.

Collaboration


Dive into the Francesca Pellistri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Cupello

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge