Francesca Stomeo
International Livestock Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francesca Stomeo.
PLOS ONE | 2015
Joseph Ndunguru; Peter Sseruwagi; Fred Tairo; Francesca Stomeo; Solomon Maina; Appolinaire Djinkeng; Monica A. Kehoe; Laura M. Boykin
Cassava brown streak disease is caused by two devastating viruses, Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) which are frequently found infecting cassava, one of sub-Saharan Africa’s most important staple food crops. Each year these viruses cause losses of up to
PLOS ONE | 2014
Adey Feleke Desta; Fassil Assefa; Seyoum Leta; Francesca Stomeo; Mark Wamalwa; Moses N. Njahira; Djikeng Appolinaire
100 million USD and can leave entire families without their primary food source, for an entire year. Twelve new whole genomes, including seven of CBSV and five of UCBSV were uncovered in this research, doubling the genomic sequences available in the public domain for these viruses. These new sequences disprove the assumption that the viruses are limited by agro-ecological zones, show that current diagnostic primers are insufficient to provide confident diagnosis of these viruses and give rise to the possibility that there may be as many as four distinct species of virus. Utilizing NGS sequencing technologies and proper phylogenetic practices will rapidly increase the solution to sustainable cassava production.
Virology Journal | 2018
Mwathi Jane Wamaitha; Deepti Nigam; Solomon Maina; Francesca Stomeo; Anne Wangai; Joyce Njuguna; Timothy A. Holton; Bramwel Wanjala; Mark Wamalwa; Tanui Lucas; Appolinaire Djikeng; Hernan Garcia-Ruiz
A culture-independent approach was used to elucidate the microbial diversity and structure in the anaerobic-aerobic reactors integrated with a constructed wetland for the treatment of tannery wastewater in Modjo town, Ethiopia. The system has been running with removal efficiencies ranging from 94%–96% for COD, 91%–100% for SO42- and S2-, 92%–94% for BOD, 56%–82% for total Nitrogen and 2%–90% for NH3-N. 16S rRNA gene clone libraries were constructed and microbial community assemblies were determined by analysis of a total of 801 unique clone sequences from all the sites. Operational Taxonomic Unit (OTU) - based analysis of the sequences revealed highly diverse communities in each of the reactors and the constructed wetland. A total of 32 phylotypes were identified with the dominant members affiliated to Clostridia (33%), Betaproteobacteria (10%), Bacteroidia (10%), Deltaproteobacteria (9%) and Gammaproteobacteria (6%). Sequences affiliated to the class Clostridia were the most abundant across all sites. The 801 sequences were assigned to 255 OTUs, of which 3 OTUs were shared among the clone libraries from all sites. The shared OTUs comprised 80 sequences belonging to Clostridiales Family XIII Incertae Sedis, Bacteroidetes and unclassified bacterial group. Significantly different communities were harbored by the anaerobic, aerobic and rhizosphere sites of the constructed wetland. Numerous representative genera of the dominant bacterial classes obtained from the different sample sites of the integrated system have been implicated in the removal of various carbon- containing pollutants of natural and synthetic origins. To our knowledge, this is the first report of microbial community structure in tannery wastewater treatment plant from Ethiopia.
bioRxiv | 2017
Ian Adams; Luke Braidwood; Francesca Stomeo; Noah Phiri; Beatrice Uwumukiza; Berhanu Feyissa; George Mahuku; Anne Wangai; Julian Smith; Rick A. Mumford; N. Boonham
BackgroundMaize lethal necrosis is caused by a synergistic co-infection of Maize chlorotic mottle virus (MCMV) and a specific member of the Potyviridae, such as Sugarcane mosaic virus (SCMV), Wheat streak mosaic virus (WSMV) or Johnson grass mosaic virus (JGMV). Typical maize lethal necrosis symptoms include severe yellowing and leaf drying from the edges. In Kenya, we detected plants showing typical and atypical symptoms. Both groups of plants often tested negative for SCMV by ELISA.MethodsWe used next-generation sequencing to identify viruses associated to maize lethal necrosis in Kenya through a metagenomics analysis. Symptomatic and asymptomatic leaf samples were collected from maize and sorghum representing sixteen counties.ResultsComplete and partial genomes were assembled for MCMV, SCMV, Maize streak virus (MSV) and Maize yellow dwarf virus-RMV (MYDV-RMV). These four viruses (MCMV, SCMV, MSV and MYDV-RMV) were found together in 30 of 68 samples. A geographic analysis showed that these viruses are widely distributed in Kenya. Phylogenetic analyses of nucleotide sequences showed that MCMV, MYDV-RMV and MSV are similar to isolates from East Africa and other parts of the world. Single nucleotide polymorphism, nucleotide and polyprotein sequence alignments identified three genetically distinct groups of SCMV in Kenya. Variation mapped to sequences at the border of NIb and the coat protein. Partial genome sequences were obtained for other four potyviruses and one polerovirus.ConclusionOur results uncover the complexity of the maize lethal necrosis epidemic in Kenya. MCMV, SCMV, MSV and MYDV-RMV are widely distributed and infect both maize and sorghum. SCMV population in Kenya is diverse and consists of numerous strains that are genetically different to isolates from other parts of the world. Several potyviruses, and possibly poleroviruses, are also involved.
Plant Pathology | 2018
Dawit B. Kidanemariam; Amit C. Sukal; A. D. Abraham; Francesca Stomeo; James L. Dale; Anthony James; Robert M. Harding
Maize lethal necrosis disease (MLN) is an emerging disease in East Africa caused by the introduction of Maize chlorotic mottle virus (MCMV). Recent activity seeking to limit spread of the disease is reliant on effective diagnostics. Traditional diagnostics applied on samples with typical field symptoms of MLN have often given negative results using ELISA or PCR for MCMV and Sugarcane mosaic virus (SCMV). Samples collected in the field with typical MLN symptoms were examined using next generation sequencing (NGS). SCMV was found to be more prevalent than suggested by targeted diagnostics. Additionally, the panel of samples were found to be infected with a range of other viruses, seven of which are described here for the first time. Although not previously identified in the region, Maize yellow mosaic virus (MYMV) was the most prevalent virus after MCMV. The development of targeted diagnostics for emerging viruses is complicated when the extent of field variation is unknown, something that can be negated by using NGS methods. As a result we explored MinION technology which may be more readily deployable in resource poor settings. The results show that this sequencer can diagnose known viruses and future iterations have the potential to identify novel viruses.
Molecular Biology Reports | 2018
Isidore Houaga; Anne W. T. Muigai; Fredrick M. Ng’ang’a; Eveline M. Ibeagha-Awemu; Martina Kyallo; Issaka A. K. Youssao; Francesca Stomeo
Taro (Colocasia esculenta) and tannia (Xanthosoma sp.) are important root crops cultivated mainly by small-scale farmers in sub-Saharan Africa and the South Pacific. Viruses are known to be one of the most important constraints to production, with infections resulting in severe yield reduction. In 2014 and 2015, surveys were conducted in Ethiopia, Kenya, Tanzania and Uganda to determine the identity of viruses infecting taro in East Africa. Screening of 392 samples collected from the region using degenerate badnavirus primers revealed an incidence of 58–74% among the four countries surveyed, with sequence analysis identifying both Taro bacilliform virus (TaBV) and Taro bacilliform CH virus (TaBCHV). TaBCHV was identified from all four countries while TaBV was identified in all except Ethiopia. Full-length sequences from representative TaBV and TaBCHV isolates showed that the genome organization of TaBV isolates from East Africa was consistent with previous reports while TaBCHV isolates from East Africa were found to encode only four ORFs, distinct from a previous report from China. Phylogenetic analysis showed that all East African TaBV isolates form a single subgroup within known TaBV isolates, while TaBCHV isolates form at least two distinct subgroups. To the authors’ knowledge, this is the first report describing the occurrence and genome organization of TaBV and TaBCHV isolates from East Africa and the first full-length sequence of the two viruses from tannia.
BMC Complementary and Alternative Medicine | 2017
Karori S. Mbuthia; Paul O. Mireji; Raphael M. Ngure; Francesca Stomeo; Martina Kyallo; Chalo Muoki; Francis N. Wachira
The stearoyl-CoA desaturase 1 (SCD1) A293V and acyl CoA: diacylglycerol acyltransferase 1 (DGAT1) K232A polymorphisms have been associated with significant variation in bovine milk fatty acid composition and unsaturation indices in western cattle breeds. This study aimed to estimate the milk fatty acid variability in indigenous Borgou and White Fulani cattle breeds of Benin, and the effects of the SCD1 A293V and DGAT1 K232A polymorphisms on milk and fatty acid composition and unsaturation indices. Thus, 85 Borgou and 96 White Fulani cows were genotyped for the SCD1 A293V and DGAT1 K232A polymorphisms and their milk and fatty acid composition and unsaturation indices were determined. Borgou presented milk with higher linoleic acid (P < 0.001), oleic acid (P < 0.05), C18 index (P < 0.001), total unsaturation index (P < 0.05), and lower total saturated fatty acid (SFA) compared to White Fulani. The SCD1 VV genotype was associated with higher protein and lactose contents in White Fulani (P < 0.05). In Borgou, the SCD1 AV genotype was associated with higher C14 and total unsaturation indices (P < 0.01), while the SCD1 V allele was associated with decrease in C14 index (P < 0.05). In White Fulani, the SCD1 VV genotype was associated with lower C18:1 cis-9 content (P < 0.05) while the DGAT1 K allele was associated with increased total SFA (P < 0.05), and decreased C18 index (P < 0.05), total unsaturation index (P < 0.01) and total monounsaturated fatty acid (P < 0.01). The SCD1 A293V and DGAT1 K232A may serve as genetic markers to improve milk fatty acid traits in Borgou and White Fulani breeds.
Journal of Plant Biotechnology | 2016
Maritim Tony; Kamunya Samson; Mwendia Charles; Mireji Paul; Muoki Richard; Wamalwa Mark; Francesca Stomeo; Schaack Sarah; Kyalo Martina; Wachira Francis
Archive | 2016
N. Yao; M. Wambugu; Francesca Stomeo; Mark Wamalwa; Appolinaire Djikeng; Josephine Birungi
Archive | 2016
D. Beyene; D. Bigirimana; G. Ndarubayemwo; P. Niyonzima; Adane D. Abraham; Timothy A. Holton; Jagger Harvey; Francesca Stomeo; J. Dale; Anthony James; Robert M. Harding