Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesco Argenton is active.

Publication


Featured researches published by Francesco Argenton.


Cell | 2009

FAM/USP9x, a Deubiquitinating Enzyme Essential for TGFβ Signaling, Controls Smad4 Monoubiquitination

Sirio Dupont; Anant Mamidi; Michelangelo Cordenonsi; Marco Montagner; Luca Zacchigna; Maddalena Adorno; Graziano Martello; Michael J. Stinchfield; Sandra Soligo; Leonardo Morsut; Masafumi Inui; Stefano Moro; Nicola Modena; Francesco Argenton; Stuart J. Newfeld; Stefano Piccolo

The assembly of the Smad complex is critical for TGFbeta signaling, yet the mechanisms that inactivate or empower nuclear Smad complexes are less understood. By means of siRNA screen we identified FAM (USP9x), a deubiquitinase acting as essential and evolutionarily conserved component in TGFbeta and bone morphogenetic protein signaling. Smad4 is monoubiquitinated in lysine 519 in vivo, a modification that inhibits Smad4 by impeding association with phospho-Smad2. FAM reverts this negative modification, re-empowering Smad4 function. FAM opposes the activity of Ectodermin/Tif1gamma (Ecto), a nuclear factor for which we now clarify a prominent role as Smad4 monoubiquitin ligase. Our study points to Smad4 monoubiquitination and deubiquitination as a way for cells to set their TGFbeta responsiveness: loss of FAM disables Smad4-dependent responses in several model systems, with Ecto being epistatic to FAM. This defines a regulative ubiquitination step controlling Smads that is parallel to those impinging on R-Smad phosphorylation.


Mechanisms of Development | 2002

BMP signalling regulates anteroposterior endoderm patterning in zebrafish

Natascia Tiso; Alida Filippi; Stefan Pauls; Marino Bortolussi; Francesco Argenton

In vertebrates, the embryonic dorsoventral asymmetry is regulated by the bone morphogenetic proteins (Bmp) activity gradient. In the present study, we have used dorsalized swirl (bmp2b) and ventralized chordino (chordin) zebrafish mutants to investigate the effects of dorsoventral signalling on endoderm patterning and on the differentiation and positioning of its derivatives. Alterations of dorsoventral Bmp signalling do not perturb the induction of endodermal precursors, as shown by normal amounts of cells expressing cas and sox17 in swirl and chordino gastrulae, but affect dramatically the expression pattern of her5, a regulator of endoderm anteroposterior patterning in zebrafish. In particular, increased levels of Bmp signalling in chordino gastrulae are associated with a markedly reduced her5 expression domain, that may be abolished by injecting bmp2b mRNA. Conversely, in swirl mutants, lacking Bmp2b, the her5 expression domain is expanded. Thus, a gradient of Bmp2b signalling defines the extension of the her5 expression domain at gastrulation and the allocation of anterior endodermal precursors. A balanced Bmp2b signalling is also required for the normal development of the pancreas, as shown by the sharp reduction of the pancreatic primordium in swirl embryos and its expansion in chordino mutants. In the latter, at 3 days post-fertilization, the increased Bmp signalling does not compromise the endocrine/exocrine pancreas compartmentalization, but the right/left positioning of the pancreas and liver is randomized. Our results suggest that by regulating the expression of her5, the Bmp2b/Chordin gradient directs the anteroposterior patterning of endoderm in zebrafish embryos.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Long-range gene regulation links genomic type 2 diabetes and obesity risk regions to HHEX, SOX4, and IRX3

Anja Ragvin; Enrico Moro; David Fredman; Pavla Navratilova; Øyvind Drivenes; Pär G. Engström; M. Eva Alonso; Elisa de la Calle Mustienes; José Luis Gómez Skarmeta Skarmeta; Maria J. Tavares; Fernando Casares; Miguel Manzanares; Veronica van Heyningen; Pål R. Njølstad; Francesco Argenton; Boris Lenhard; Thomas S. Becker

Genome-wide association studies identified noncoding SNPs associated with type 2 diabetes and obesity in linkage disequilibrium (LD) blocks encompassing HHEX-IDE and introns of CDKAL1 and FTO [Sladek R, et al. (2007) Nature 445:881–885; Steinthorsdottir V, et al. (2007) Nat. Genet 39:770–775; Frayling TM, et al. (2007) Science 316:889–894]. We show that these LD blocks contain highly conserved noncoding elements and overlap with the genomic regulatory blocks of the transcription factor genes HHEX, SOX4, and IRX3. We report that human highly conserved noncoding elements in LD with the risk SNPs drive expression in endoderm or pancreas in transgenic mice and zebrafish. Both HHEX and SOX4 have recently been implicated in pancreas development and the regulation of insulin secretion, but IRX3 had no prior association with pancreatic function or development. Knockdown of its orthologue in zebrafish, irx3a, increased the number of pancreatic ghrelin-producing epsilon cells and decreased the number of insulin-producing β-cells and glucagon-producing α-cells, thereby suggesting a direct link of pancreatic IRX3 function to both obesity and type 2 diabetes.


Mechanisms of Development | 1999

Early appearance of pancreatic hormone-expressing cells in the zebrafish embryo.

Francesco Argenton; Elisabetta Zecchin; Marino Bortolussi

Adult pancreatic islets comprise four cell types, alpha, beta, delta and PP, expressing glucagon, insulin, somatostatin and pancreatic-polypeptide, respectively, arising from cell lineages whose relationships during endocrine pancreas differentiation are still uncertain [Edlund, 1998. Diabetes 47, 1817-1823]. As zebrafish (Danio rerio) represents an attractive vertebrate model to study mutants affecting pancreatic organogenesis [Pack et al., 1996. Development 123, 321-328], we have investigated the expression patterns of islet hormones in zebrafish embryos, from the 16-somite (17 h) to 48-h stages, by whole-mount in situ hybridization and immunofluorescence. Results showed that in the zebrafish pancreatic primordium (a) insulin is the first hormone gene to be expressed, and (b) somatostatin colocalizes with insulin while glucagon-expressing cells, since their appearance, are distinct from insulin- or insulin/somatostatin-expressing cells. Notably, both somatostatin and glucagon, but not insulin, are first expressed in extrapancreatic regions.


FEBS Letters | 2003

Molecular and functional characterisation of the zebrafish (Danio rerio) PEPT1-type peptide transporter1

Tiziano Verri; Gabor Kottra; Alessandro Romano; Natascia Tiso; Mark Peric; Michele Maffia; Michael Boll; Francesco Argenton; Hannelore Daniel; Carlo Storelli

We report the molecular and functional characterisation of a novel peptide transporter from zebrafish, orthologue to mammalian and avian PEPT1. Zebrafish PEPT1 is a low‐affinity/high‐capacity system. However, in contrast to higher vertebrate counterparts in which maximal transport activity is independent of extracellular pH, zebrafish PEPT1 maximal transport rates unexpectedly increase at alkaline extracellular pH. Zebrafish pept1 is highly expressed in the proximal intestine since day 4 post‐fertilisation, thus preceding functional maturation of the gut, first feeding and complete yolk resorption. Zebrafish PEPT1 might help to understand the evolutionary and functional relationships among vertebrate peptide transporters. Moreover, zebrafish pept1 can be a useful marker for screening mutations that affect gut regionalisation, differentiation and morphogenesis.


Cell Reports | 2014

Wnt/β-Catenin Signaling Defines Organizing Centers that Orchestrate Growth and Differentiation of the Regenerating Zebrafish Caudal Fin

Daniel Wehner; Wiebke Cizelsky; Mohankrishna Dalvoy Vasudevaro; Günes Özhan; Christa Haase; Birgit Kagermeier-Schenk; Alexander Röder; Richard I. Dorsky; Enrico Moro; Francesco Argenton; Michael Kühl; Gilbert Weidinger

Zebrafish regenerate their fins via the formation of a population of progenitor cells, the blastema. Wnt/β-catenin signaling is essential for blastemal cell proliferation and patterning of the overlying epidermis. Yet, we find that β-catenin signaling is neither active in the epidermis nor the majority of the proliferative blastemal cells. Rather, tissue-specific pathway interference indicates that Wnt signaling in the nonproliferative distal blastema is required for cell proliferation in the proximal blastema, and signaling in cells lining the osteoblasts directs osteoblast differentiation. Thus, Wnt signaling regulates epidermal patterning, blastemal cell proliferation, and osteoblast maturation indirectly via secondary signals. Gene expression profiling, chromatin immunoprecipitation, and functional rescue experiments suggest that Wnt/β-catenin signaling acts through Fgf and Bmp signaling to control epidermal patterning, whereas retinoic acid and Hedgehog signals mediate its effects on blastemal cell proliferation. We propose that Wnt signaling orchestrates fin regeneration by defining organizing centers that instruct cellular behaviors of adjacent tissues.


Behavioural Brain Research | 2010

Early differences in epithalamic left-right asymmetry influence lateralization and personality of adult zebrafish

Marco Dadda; Alice Domenichini; Laura Piffer; Francesco Argenton; Angelo Bisazza

The habenulae are part of an evolutionary conserved conduction system that connects the limbic forebrain areas with midbrain structures and is implicated in important functions such as feeding, mating, avoidance learning, and hormonal response to stress. Very early during zebrafish neurogenesis the parapineal organ migrates near to one habenula, commonly the left, inducing wide left-right habenular asymmetries in gene expression and connectivity. It was posited that this initial symmetry-breaking event determines the development of lateralized brain functions and early differences in epithalamic left-right asymmetry give rise to individual variation in coping styles and personality. We tested these two hypotheses by sorting zebrafish with left or right parapineal at birth using a foxD3:GFP marker and by measuring visual and motor laterality and three personality dimensions as they become adults. Significant differences between fish with opposite parapineal position were found in all laterality tests while the influence of asymmetry of the habenulae on personality was more complex. Fish with atypical right parapineal position, tended to be bolder when inspecting a predator, spent less time in the peripheral portion of an open field and covered a shorter distance when released in the dark. Activity in the open field was not associated to anatomical asymmetry but correlated with laterality of predator inspection that in turn was influenced by parapineal position. One personality dimension, sociality, appeared uncorrelated to both anatomical and functional asymmetries and was instead influenced by the sex of the fish, thus suggesting that other factors, i.e. hormonal, may be implicated in its development.


Development | 2004

Prep1.1 has essential genetic functions in hindbrain development and cranial neural crest cell differentiation

Gianluca Deflorian; Natascia Tiso; Elisabetta Ferretti; Dirk Meyer; Francesco Blasi; Marino Bortolussi; Francesco Argenton

In this study we analysed the function of the Meinox gene prep1.1 during zebrafish development. Meinox proteins form heterotrimeric complexes with Hox and Pbx members, increasing the DNA binding specificity of Hox proteins in vitro and in vivo. However, a role for a specific Meinox protein in the regulation of Hox activity in vivo has not been demonstrated. In situ hybridization showed that prep1.1 is expressed maternally and ubiquitously up to 24 hours post-fertilization (hpf), and restricted to the head from 48 hpf onwards. Morpholino-induced prep1.1 loss-of-function caused significant apoptosis in the CNS. Hindbrain segmentation and patterning was affected severely, as revealed by either loss or defective expression of several hindbrain markers (foxb1.2/mariposa, krox20, pax2.1 and pax6.1), including anteriorly expressed Hox genes (hoxb1a, hoxa2 and hoxb2), the impaired migration of facial nerve motor neurons, and the lack of reticulospinal neurons (RSNs) except Mauthner cells. Furthermore, the heads of prep1.1 morphants lacked all pharyngeal cartilages. This was not caused by the absence of neural crest cells or their impaired migration into the pharyngeal arches, as shown by expression of dlx2 and snail1, but by the inability of these cells to differentiate into chondroblasts. Our results indicate that prep1.1 has a unique genetic function in craniofacial chondrogenesis and, acting as a member of Meinox-Pbc-Hox trimers, it plays an essential role in hindbrain development.


Molecular and Cellular Endocrinology | 2009

Zebrafish pancreas development.

Natascia Tiso; Enrico Moro; Francesco Argenton

An accurate understanding of the molecular events governing pancreas development can have an impact on clinical medicine related to diabetes, obesity and pancreatic cancer, diseases with a high impact in public health. Until 1996, the main animal models in which pancreas formation and differentiation could be studied were mouse and, for some instances related to early development, chicken and Xenopus. Zebrafish has penetrated this field very rapidly offering a new model of investigation; by joining functional genomics, genetics and in vivo whole mount visualization, Danio rerio has allowed large scale and fine multidimensional analysis of gene functions during pancreas formation and differentiation.


Development | 2011

Lef1-dependent Wnt/β-catenin signalling drives the proliferative engine that maintains tissue homeostasis during lateral line development.

Leonardo E. Valdivia; Rodrigo M. Young; Thomas A. Hawkins; Heather L. Stickney; Florencia Cavodeassi; Quenten Schwarz; Lisa M. Pullin; Rosario Villegas; Enrico Moro; Francesco Argenton; Miguel L. Allende; Stephen W. Wilson

During tissue morphogenesis and differentiation, cells must self-renew while contemporaneously generating daughters that contribute to the growing tissue. How tissues achieve this precise balance between proliferation and differentiation is, in most instances, poorly understood. This is in part due to the difficulties in dissociating the mechanisms that underlie tissue patterning from those that regulate proliferation. In the migrating posterior lateral line primordium (PLLP), proliferation is predominantly localised to the leading zone. As cells emerge from this zone, they periodically organise into rosettes that subsequently dissociate from the primordium and differentiate as neuromasts. Despite this reiterative loss of cells, the primordium maintains its size through regenerative cell proliferation until it reaches the tail. In this study, we identify a null mutation in the Wnt-pathway transcription factor Lef1 and show that its activity is required to maintain proliferation in the progenitor pool of cells that sustains the PLLP as it undergoes migration, morphogenesis and differentiation. In absence of Lef1, the leading zone becomes depleted of cells during its migration leading to the collapse of the primordium into a couple of terminal neuromasts. We show that this behaviour resembles the process by which the PLLP normally ends its migration, suggesting that suppression of Wnt signalling is required for termination of neuromast production in the tail. Our data support a model in which Lef1 sustains proliferation of leading zone progenitors, maintaining the primordium size and defining neuromast deposition rate.

Collaboration


Dive into the Francesco Argenton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge