Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Enrico Moro is active.

Publication


Featured researches published by Enrico Moro.


Gene Therapy | 1997

ExGen 500 is an efficient vector for gene delivery to lung epithelial cells in vitro and in vivo

Stefano Ferrari; Enrico Moro; Andrea Pettenazzo; Behr Jp; Franco Zacchello; Maurizio Scarpa

Nonviral vectors might represent a safe alternative to adenovirus for gene therapy of lung disorders, in particular cystic fibrosis (CF). Cationic lipids have been shown to correct the CF defect both in vitro and in vivo, but more efficient vectors are needed to improve the low gene transfer efficiency. Here, we show that the cationic polymer ExGen 500, a linear polyethylenimine derivative, is more efficient than cationic lipids in transferring reporter genes to lung epithelial cells in vitro. In vivo ExGen 500 was able to mediate gene transfer into both newborn and adult rabbit lungs with comparable efficiencies. The best levels of transfection were obtained using neutral complexes. Under such conditions, luciferase activities corresponding to about 103 RLU/10 s/mg of protein were reproducibly obtained 2 days after transfection throughout the four lung lobes of newborn and adult rabbits. A nlslacZ reporter gene showed transfected cells around the lumen of large and small bronchi. No signs of acute toxicity (inflammation, cellular infiltration etc) were detected by direct histopathological analysis. Within 1 week after instillation, transgene expression decreased by two orders of magnitude.


Journal of Medical Genetics | 2003

The human Y chromosome’s azoospermia factor b (AZFb) region: sequence, structure, and deletion analysis in infertile men

Alberto Ferlin; Enrico Moro; A Rossi; B Dallapiccola; Carlo Foresta

Microdeletions of the Y chromosome long arm are the most common mutations in infertile males, where they involve one or more “azoospermia factors” (AZFa, b, and c). Understanding of the AZF structure and gene content and mapping of the deletion breakpoints in infertile men are still incomplete. We have assembled a complete 4.3 Mb map of AZFb and surrounding regions by means of 38 BAC clones. The proximal part of AZFb consists of large repeated sequences organised in palindromes, but most of it is single copy sequence. A number of known and novel genes and gene families map in this interval, and most of them are testis specific or have testis specific transcripts. STS mapping allowed us to identify four severely infertile subjects with a deletion in AZFb with similar breakpoints, therefore suggesting a common deletion mechanism. This deletion includes at least five single copy genes and two duplicated genes, but does not remove the historical AZFb candidate gene RBMY1. These data suggest that other genes in AZFb may have important roles in spermatogenesis. We had no evidence for homologous recombination between large repeats as a possible deletion mechanism, as shown for AZFa and AZFc. However, identical sequences in AZFb and AZFc exist, and this finding could explain deletions found in these regions.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Long-range gene regulation links genomic type 2 diabetes and obesity risk regions to HHEX, SOX4, and IRX3

Anja Ragvin; Enrico Moro; David Fredman; Pavla Navratilova; Øyvind Drivenes; Pär G. Engström; M. Eva Alonso; Elisa de la Calle Mustienes; José Luis Gómez Skarmeta Skarmeta; Maria J. Tavares; Fernando Casares; Miguel Manzanares; Veronica van Heyningen; Pål R. Njølstad; Francesco Argenton; Boris Lenhard; Thomas S. Becker

Genome-wide association studies identified noncoding SNPs associated with type 2 diabetes and obesity in linkage disequilibrium (LD) blocks encompassing HHEX-IDE and introns of CDKAL1 and FTO [Sladek R, et al. (2007) Nature 445:881–885; Steinthorsdottir V, et al. (2007) Nat. Genet 39:770–775; Frayling TM, et al. (2007) Science 316:889–894]. We show that these LD blocks contain highly conserved noncoding elements and overlap with the genomic regulatory blocks of the transcription factor genes HHEX, SOX4, and IRX3. We report that human highly conserved noncoding elements in LD with the risk SNPs drive expression in endoderm or pancreas in transgenic mice and zebrafish. Both HHEX and SOX4 have recently been implicated in pancreas development and the regulation of insulin secretion, but IRX3 had no prior association with pancreatic function or development. Knockdown of its orthologue in zebrafish, irx3a, increased the number of pancreatic ghrelin-producing epsilon cells and decreased the number of insulin-producing β-cells and glucagon-producing α-cells, thereby suggesting a direct link of pancreatic IRX3 function to both obesity and type 2 diabetes.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Pituitary tumor transforming gene-null male mice exhibit impaired pancreatic beta cell proliferation and diabetes

Zhiyong Wang; Enrico Moro; Kalman Kovacs; Run Yu; Shlomo Melmed

The mammalian securin, pituitary tumor transforming gene (PTTG), regulates sister chromatid separation during mitosis. Mice or cell lines deficient in PTTG expression, however, are surprisingly viable. Here we show that PTTG disruption in mice (PTTG−/−) severely impairs glucose homeostasis leading to diabetes during late adulthood, especially in males associated with nonautoimmune insulinopenia and reversed alpha/beta cell ratio. Islet beta cell mass in PTTG−/− mice was already diminished before development of frank diabetes and only increased minimally during growth. BrdUrd incorporation of islet cells in PTTG-null mice was ≈65% lower (P < 0.005) than in the WT pancreas, whereas apoptosis rates were similar. PTTG−/− beta cells had pleiotropic nuclei, suggesting defects in cell division. The results indicated that securin is indispensable for normal pancreatic beta cell proliferation.


Cell Reports | 2014

Wnt/β-Catenin Signaling Defines Organizing Centers that Orchestrate Growth and Differentiation of the Regenerating Zebrafish Caudal Fin

Daniel Wehner; Wiebke Cizelsky; Mohankrishna Dalvoy Vasudevaro; Günes Özhan; Christa Haase; Birgit Kagermeier-Schenk; Alexander Röder; Richard I. Dorsky; Enrico Moro; Francesco Argenton; Michael Kühl; Gilbert Weidinger

Zebrafish regenerate their fins via the formation of a population of progenitor cells, the blastema. Wnt/β-catenin signaling is essential for blastemal cell proliferation and patterning of the overlying epidermis. Yet, we find that β-catenin signaling is neither active in the epidermis nor the majority of the proliferative blastemal cells. Rather, tissue-specific pathway interference indicates that Wnt signaling in the nonproliferative distal blastema is required for cell proliferation in the proximal blastema, and signaling in cells lining the osteoblasts directs osteoblast differentiation. Thus, Wnt signaling regulates epidermal patterning, blastemal cell proliferation, and osteoblast maturation indirectly via secondary signals. Gene expression profiling, chromatin immunoprecipitation, and functional rescue experiments suggest that Wnt/β-catenin signaling acts through Fgf and Bmp signaling to control epidermal patterning, whereas retinoic acid and Hedgehog signals mediate its effects on blastemal cell proliferation. We propose that Wnt signaling orchestrates fin regeneration by defining organizing centers that instruct cellular behaviors of adjacent tissues.


Molecular and Cellular Endocrinology | 2009

Zebrafish pancreas development.

Natascia Tiso; Enrico Moro; Francesco Argenton

An accurate understanding of the molecular events governing pancreas development can have an impact on clinical medicine related to diabetes, obesity and pancreatic cancer, diseases with a high impact in public health. Until 1996, the main animal models in which pancreas formation and differentiation could be studied were mouse and, for some instances related to early development, chicken and Xenopus. Zebrafish has penetrated this field very rapidly offering a new model of investigation; by joining functional genomics, genetics and in vivo whole mount visualization, Danio rerio has allowed large scale and fine multidimensional analysis of gene functions during pancreas formation and differentiation.


Development | 2011

Lef1-dependent Wnt/β-catenin signalling drives the proliferative engine that maintains tissue homeostasis during lateral line development.

Leonardo E. Valdivia; Rodrigo M. Young; Thomas A. Hawkins; Heather L. Stickney; Florencia Cavodeassi; Quenten Schwarz; Lisa M. Pullin; Rosario Villegas; Enrico Moro; Francesco Argenton; Miguel L. Allende; Stephen W. Wilson

During tissue morphogenesis and differentiation, cells must self-renew while contemporaneously generating daughters that contribute to the growing tissue. How tissues achieve this precise balance between proliferation and differentiation is, in most instances, poorly understood. This is in part due to the difficulties in dissociating the mechanisms that underlie tissue patterning from those that regulate proliferation. In the migrating posterior lateral line primordium (PLLP), proliferation is predominantly localised to the leading zone. As cells emerge from this zone, they periodically organise into rosettes that subsequently dissociate from the primordium and differentiate as neuromasts. Despite this reiterative loss of cells, the primordium maintains its size through regenerative cell proliferation until it reaches the tail. In this study, we identify a null mutation in the Wnt-pathway transcription factor Lef1 and show that its activity is required to maintain proliferation in the progenitor pool of cells that sustains the PLLP as it undergoes migration, morphogenesis and differentiation. In absence of Lef1, the leading zone becomes depleted of cells during its migration leading to the collapse of the primordium into a couple of terminal neuromasts. We show that this behaviour resembles the process by which the PLLP normally ends its migration, suggesting that suppression of Wnt signalling is required for termination of neuromast production in the tail. Our data support a model in which Lef1 sustains proliferation of leading zone progenitors, maintaining the primordium size and defining neuromast deposition rate.


Cell Death and Disease | 2013

Wnt activation promotes neuronal differentiation of Glioblastoma

Elena Rampazzo; Luca Persano; Francesca Pistollato; Enrico Moro; Chiara Frasson; Patrizia Porazzi; A. Della Puppa; Silvia Bresolin; Giusy Battilana; S Indraccolo; G te Kronnie; Francesco Argenton; Natascia Tiso; G Basso

One of the biggest challenges in tumour research is the possibility to reprogram cancer cells towards less aggressive phenotypes. In this study, we reprogrammed primary Glioblastoma multiforme (GBM)-derived cells towards a more differentiated and less oncogenic phenotype by activating the Wnt pathway in a hypoxic microenvironment. Hypoxia usually correlates with malignant behaviours in cancer cells, but it has been recently involved, together with Wnt signalling, in the differentiation of embryonic and neural stem cells. Here, we demonstrate that treatment with Wnt ligands, or overexpression of β-catenin, mediate neuronal differentiation and halt proliferation in primary GBM cells. An hypoxic environment cooperates with Wnt-induced differentiation, in line with our finding that hypoxia inducible factor-1α (HIF-1α) is instrumental and required to sustain the expression of β-catenin transcriptional partners TCF-1 and LEF-1. In addition, we also found that Wnt-induced GBM cell differentiation inhibits Notch signalling, and thus gain of Wnt and loss of Notch cooperate in the activation of a pro-neuronal differentiation program. Intriguingly, the GBM sub-population enriched of cancer stem cells (CD133+ fraction) is the primary target of the pro-differentiating effects mediated by the crosstalk between HIF-1α, Wnt, and Notch signalling. By using zebrafish transgenics and mutants as model systems to visualize and manipulate in vivo the Wnt pathway, we confirm that Wnt pathway activation is able to promote neuronal differentiation and inhibit Notch signalling of primary human GBM cells also in this in vivo set-up. In conclusion, these findings shed light on an unsuspected crosstalk between hypoxia, Wnt and Notch signalling in GBM, and suggest the potential to manipulate these microenvironmental signals to blunt GBM malignancy.


Journal of Biological Chemistry | 2012

Diverse chemical scaffolds support direct inhibition of the membrane bound O-acyltransferase Porcupine

Michael E. Dodge; Jesung Moon; Rubina Tuladhar; Jianming Lu; Leni S. Jacob; Li Shu Zhang; Heping Shi; Xiaolei Wang; Enrico Moro; Alessandro Mongera; Francesco Argenton; Courtney M. Karner; Thomas J. Carroll; Chuo Chen; James F. Amatruda; Lawrence Lum

Background: The acyltransferase Porcupine (Porcn) is essential for active Wnt ligand production and is chemically tractable. Results: Novel small molecules targeting Porcn enables interrogation of Wnt signaling in vitro and in vivo. Conclusion: Porcn is highly druggable and supports diverse cellular responses in embryonic development and regeneration. Significance: Porcn inhibitors represent versatile chemical probes for Wnt signaling in vivo and are potential anti-cancer therapeutic agents. Secreted Wnt proteins constitute one of the largest families of intercellular signaling molecules in vertebrates with essential roles in embryonic development and adult tissue homeostasis. The functional redundancy of Wnt genes and the many forms of cellular responses they elicit, including some utilizing the transcriptional co-activator β-catenin, has limited the ability of classical genetic strategies to uncover their roles in vivo. We had previously identified a chemical compound class termed Inhibitor of Wnt Production (or IWP) that targets Porcupine (Porcn), an acyltransferase catalyzing the addition of fatty acid adducts onto Wnt proteins. Here we demonstrate that diverse chemical structures are able to inhibit Porcn by targeting its putative active site. When deployed in concert with small molecules that modulate the activity of Tankyrase enzymes and glycogen synthase kinase 3 β (GSK3β), additional transducers of Wnt/β-catenin signaling, the IWP compounds reveal an essential role for Wnt protein fatty acylation in eliciting β-catenin-dependent and -independent forms of Wnt signaling during zebrafish development. This collection of small molecules facilitates rapid dissection of Wnt gene function in vivo by limiting the influence of redundant Wnt gene functions on phenotypic outcomes and enables temporal manipulation of Wnt-mediated signaling in vertebrates.


Molecular and Cellular Endocrinology | 2000

Y chromosome microdeletions in infertile men with varicocele

Enrico Moro; P Marin; A Rossi; Andrea Garolla; Alberto Ferlin

The pathogenic mechanisms by which varicocele disrupt spermatogenesis are not clearly understood and it is possible that when varicocele is associated with a severe bilateral testiculopathy, other causes may represent the actual aetiological factor. Since microdeletions in the Y chromosome long arm (Yq) have become in last years a major cause of male infertility, we perform a Yq microdeletion screening in infertile men with varicocele. We selected 40 patients with severe oligozoospermia (sperm count<5x10(6)/ml, group 1) and 80 with varicocele and mild oligozoospermia (sperm count 10-20x10(6)/ml, group 2). Deletions of Yq was observed in seven out of 40 patients (17.5%) of group 1, while no deletions were found in patients of group 2, suggesting that the bilateral testicular damage observed in patients of group 1 is due to the underlying genetic anomaly, and not to varicocele itself. The finding of a genetic aetiology in infertile men with varicocele suggests that in such patients a Yq microdeletion screening should be performed, both for a proper diagnosis and to avoid unnecessary treatments that will probably not improve the sperm count.

Collaboration


Dive into the Enrico Moro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge