Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesco Doro is active.

Publication


Featured researches published by Francesco Doro.


Nature Biotechnology | 2006

Characterization and identification of vaccine candidate proteins through analysis of the group A Streptococcus surface proteome

Manuel J Rodríguez-Ortega; Nathalie Norais; Giuliano Bensi; Sabrina Liberatori; Sabrina Capo; Marirosa Mora; Maria Scarselli; Francesco Doro; Germano Ferrari; Ignazio Garaguso; Tiziana Maggi; Anita Neumann; Alessia Covre; John L. Telford; Guido Grandi

We describe a proteomic approach for identifying bacterial surface-exposed proteins quickly and reliably for their use as vaccine candidates. Whole cells are treated with proteases to selectively digest protruding proteins that are subsequently identified by mass spectrometry analysis of the released peptides. When applied to the sequenced M1_SF370 group A Streptococcus strain, 68 PSORT-predicted surface-associated proteins were identified, including most of the protective antigens described in the literature. The number of surface-exposed proteins varied from strain to strain, most likely as a consequence of different capsule content. The surface-exposed proteins of the highly virulent M23_DSM2071 strain included 17 proteins, 15 in common with M1_SF370. When 14 of the 17 proteins were expressed in E. coli and tested in the mouse for their capacity to confer protection against a lethal dose of M23_DSM2071, one new protective antigen (Spy0416) was identified. This strategy overcomes the difficulties so far encountered in surface protein characterization and has great potential in vaccine discovery.


Molecular & Cellular Proteomics | 2008

Proteomics Characterization of Outer Membrane Vesicles from the Extraintestinal Pathogenic Escherichia coli ΔtolR IHE3034 Mutant

Francesco Doro; Manuel J. Rodríguez-Ortega; Maria Stella; Sabrina Liberatori; Anna Rita Taddei; Laura Serino; Danilo Gomes Moriel; Barbara Nesta; Maria Rita Fontana; Angela Spagnuolo; Mariagrazia Pizza; Nathalie Norais; Guido Grandi

Extraintestinal pathogenic Escherichia coli are the cause of a diverse spectrum of invasive infections in humans and animals, leading to urinary tract infections, meningitis, or septicemia. In this study, we focused our attention on the identification of the outer membrane proteins of the pathogen in consideration of their important biological role and of their use as potential targets for prophylactic and therapeutic interventions. To this aim, we generated a ΔtolR mutant of the pathogenic IHE3034 strain that spontaneously released a large quantity of outer membrane vesicles in the culture supernatant. The vesicles were analyzed by two-dimensional electrophoresis coupled to mass spectrometry. The analysis led to the identification of 100 proteins, most of which are localized to the outer membrane and periplasmic compartments. Interestingly based on the genome sequences available in the current public database, seven of the identified proteins appear to be specific for pathogenic E. coli and enteric bacteria and therefore are potential targets for vaccine and drug development. Finally we demonstrated that the cytolethal distending toxin, a toxin exclusively produced by pathogenic bacteria, is released in association with the vesicles, supporting the recently proposed role of bacterial vesicles in toxin delivery to host cells. Overall, our data demonstrated that outer membrane vesicles represent an ideal tool to study Gram-negative periplasm and outer membrane compartments and to shed light on new mechanisms of bacterial pathogenesis.


Molecular & Cellular Proteomics | 2009

Surfome Analysis as a Fast Track to Vaccine Discovery IDENTIFICATION OF A NOVEL PROTECTIVE ANTIGEN FOR GROUP B STREPTOCOCCUS HYPERVIRULENT STRAIN COH1

Francesco Doro; Sabrina Liberatori; Manuel J. Rodríguez-Ortega; Cira Daniela Rinaudo; Roberto Rosini; Marirosa Mora; Maria Scarselli; Emrah Altindis; Romina D'aurizio; Maria Stella; Immaculada Margarit; Domenico Maione; John L. Telford; Nathalie Norais; Guido Grandi

Safe recombinant vaccines, based on a small number of antigenic proteins, are emerging as the most attractive, cost-effective solution against infectious diseases. In the present work, we confirmed previous data from our laboratory showing that whole viable bacterial cell treatment with proteases followed by the identification of released peptides by mass spectrometry is the method of choice for the rapid and reliable identification of vaccine candidates in Gram-positive bacteria. When applied to the Group B Streptococcus COH1 strain, 43 surface-associated proteins were identified, including all the protective antigens described in the literature as well as a new protective antigen, the cell wall-anchored protein SAN_1485 belonging to the serine-rich repeat protein family. This strategy overcomes the difficulties so far encountered in the identification of novel vaccine candidates and speeds up the entire vaccine discovery process by reducing the number of recombinant proteins to be tested in the animal model.


Science Translational Medicine | 2014

Rational design of small molecules as vaccine adjuvants

Manmohan Singh; Andrew T. Miller; Francesco Doro; David Skibinski; M. Lamine Mbow; Simone Bufali; Ann E. Herman; Alex Cortez; Yongkai Li; Bishnu P. Nayak; Elaine Tritto; Christophe M. Filippi; Gillis Otten; Luis A. Brito; Elisabetta Monaci; Chun Li; Susanna Aprea; Sara Valentini; Donatello Laera; Brunella Brunelli; Elena Caproni; Padma Malyala; Rekha G. Panchal; Travis K. Warren; Sina Bavari; Derek O'hagan; Michael P. Cooke; Nicholas M. Valiante

Small-molecule immune potentiators can be engineered to be potent adjuvants with localized innate immune activation and short in vivo residence times. Better Adjuvants Through Chemistry Vaccine development has come a long way since Jenner first noticed that cowpox protected against smallpox. And yet, many vaccines do not work well alone; adjuvants are included with the vaccine to boost the immune response. Despite the critical role of adjuvants in vaccine efficacy, new adjuvant development has been empirical. Now, Wu et al. report the rational optimization of small-molecule immune potentiators (SMIPs) as adjuvants. These SMIPs were engineered to have limited bioavailability and remain localized, inducing temporally and spatially restricted inflammation. This systematic approach to optimizing adjuvant properties may allow for improved immune responses to vaccines with fewer side effects. Adjuvants increase vaccine potency largely by activating innate immunity and promoting inflammation. Limiting the side effects of this inflammation is a major hurdle for adjuvant use in vaccines for humans. It has been difficult to improve on adjuvant safety because of a poor understanding of adjuvant mechanism and the empirical nature of adjuvant discovery and development historically. We describe new principles for the rational optimization of small-molecule immune potentiators (SMIPs) targeting Toll-like receptor 7 as adjuvants with a predicted increase in their therapeutic indices. Unlike traditional drugs, SMIP-based adjuvants need to have limited bioavailability and remain localized for optimal efficacy. These features also lead to temporally and spatially restricted inflammation that should decrease side effects. Through medicinal and formulation chemistry and extensive immunopharmacology, we show that in vivo potency can be increased with little to no systemic exposure, localized innate immune activation and short in vivo residence times of SMIP-based adjuvants. This work provides a systematic and generalizable approach to engineering small molecules for use as vaccine adjuvants.


Infection and Immunity | 2012

RrgB321, a fusion protein of the three variants of the pneumococcal pilus backbone RrgB, is protective in vivo and elicits opsonic antibodies.

Carole Harfouche; Sara Filippini; Claudia Gianfaldoni; Paolo Ruggiero; Monica Moschioni; Silvia Maccari; Laura Pancotto; Letizia Arcidiacono; Bruno Galletti; Stefano Censini; Elena Mori; Marzia Monica Giuliani; Claudia Facciotti; Elena Cartocci; Silvana Savino; Francesco Doro; Michele Pallaoro; Salvatore Nocadello; Giuseppe Mancuso; Mitch Haston; David Goldblatt; Michèle A. Barocchi; Mariagrazia Pizza; Rino Rappuoli; Vega Masignani

ABSTRACT Streptococcus pneumoniae pilus 1 is present in 30 to 50% of invasive disease-causing strains and is composed of three subunits: the adhesin RrgA, the major backbone subunit RrgB, and the minor ancillary protein RrgC. RrgB exists in three distinct genetic variants and, when used to immunize mice, induces an immune response specific for each variant. To generate an antigen able to protect against the infection caused by all pilus-positive S. pneumoniae strains, we engineered a fusion protein containing the three RrgB variants (RrgB321). RrgB321 elicited antibodies against proteins from organisms in the three clades and protected mice against challenge with piliated pneumococcal strains. RrgB321 antisera mediated complement-dependent opsonophagocytosis of piliated strains at levels comparable to those achieved with the PCV7 glycoconjugate vaccine. These results suggest that a vaccine composed of RrgB321 has the potential to cover 30% or more of all pneumococcal strains and support the inclusion of this fusion protein in a multicomponent vaccine against S. pneumoniae.


Vaccine | 2012

Immunization with the RrgB321 fusion protein protects mice against both high and low pilus-expressing Streptococcus pneumoniae populations

Monica Moschioni; Gabriella De Angelis; Carole Harfouche; Esmeralda Bizzarri; Sara Filippini; Elena Mori; Giuseppe Mancuso; Francesco Doro; Michèle A. Barocchi; Paolo Ruggiero; Vega Masignani

RrgB321, a fusion protein of the three Streptococcus pneumoniae pilus-1 backbone RrgB variants, is protective in vivo against pilus islet 1 (PI-1) positive pneumococci. In addition, antibodies to RrgB321 mediate a complement-dependent opsonophagocytosis of PI-1 positive strains at levels comparable to those obtained with antisera against glycoconjugate vaccines. In the pneumococcus, pilus-1 displays a biphasic expression pattern, with different proportions of two bacterial phenotypes, one expressing and one not expressing the pilus-1. These two populations can be stably separated in vitro giving rise to the enriched high (H) and low (L) pilus expressing populations. In this work we demonstrate that: (i) the opsonophagocytic killing mediated in vitro by RrgB321 antisera is strictly dependent on the pilus expression ratio of the strain used; (ii) during the opsonophagocytosis assay pilus-expressing pneumococci are selectively killed, and (iii) no switch towards the pilus non-expressing phenotype can be observed. Furthermore, in sepsis and pneumonia models, mice immunized with RrgB321 are significantly protected against challenge with either the H or the L pilus-expressing population of strains representative of the three RrgB variants. This suggests that the pilus-1 expression is not down-regulated, and also that the expression of the pilus-1 could be up-regulated in vivo. In conclusion, these data provide evidence that RrgB321 is protective against PI-1 positive strains regardless of their pilus expression level, and support the rationale for the inclusion of this fusion protein into a multi-component protein-based pneumococcal vaccine.


Molecular & Cellular Proteomics | 2015

The human pathogen Streptococcus pyogenes releases lipoproteins as Lipoprotein-rich Membrane Vesicles

Massimiliano Biagini; Manuela Garibaldi; Susanna Aprea; Alfredo Pezzicoli; Francesco Doro; Marco Becherelli; Anna Rita Taddei; Chiara Tani; Simona Tavarini; Marirosa Mora; Giuseppe Teti; Ugo D'Oro; Sandra Nuti; Marco Soriani; Immaculada Margarit; Rino Rappuoli; Guido Grandi; Nathalie Norais

Bacterial lipoproteins are attractive vaccine candidates because they represent a major class of cell surface-exposed proteins in many bacteria and are considered as potential pathogen-associated molecular patterns sensed by Toll-like receptors with built-in adjuvanticity. Although Gram-negative lipoproteins have been extensively characterized, little is known about Gram-positive lipoproteins. We isolated from Streptococcus pyogenes a large amount of lipoproteins organized in vesicles. These vesicles were obtained by weakening the bacterial cell wall with a sublethal concentration of penicillin. Lipid and proteomic analysis of the vesicles revealed that they were enriched in phosphatidylglycerol and almost exclusively composed of lipoproteins. In association with lipoproteins, a few hypothetical proteins, penicillin-binding proteins, and several members of the ExPortal, a membrane microdomain responsible for the maturation of secreted proteins, were identified. The typical lipidic moiety was apparently not necessary for lipoprotein insertion in the vesicle bilayer because they were also recovered from the isogenic diacylglyceryl transferase deletion mutant. The vesicles were not able to activate specific Toll-like receptor 2, indicating that lipoproteins organized in these vesicular structures do not act as pathogen-associated molecular patterns. In light of these findings, we propose to name these new structures Lipoprotein-rich Membrane Vesicles.


Proteomics | 2006

Outer membrane vesicles from group B Neisseria meningitidis Δgna33 mutant: Proteomic and immunological comparison with detergent-derived outer membrane vesicles

Germano Ferrari; Ignazio Garaguso; Jeannette Adu-Bobie; Francesco Doro; Anna Rita Taddei; Alessia Biolchi; Brunella Brunelli; Marzia Monica Giuliani; Mariagrazia Pizza; Nathalie Norais; Guido Grandi


Archive | 2010

Immunogenic compositions including tlr activity modulators

Manmohan Singh; David Skibinski; Simona Cianetti; Francesco Doro; Siddhartha Jain


Archive | 2010

PROTECTIVE ANTIGENS FOR GROUP B STREPTOCOCCUS HYPERVIRULENT STRAINS

Francesco Doro; Nathalie Norais; Domenico Maione; Sabrina Liberatori; Guido Grandi

Collaboration


Dive into the Francesco Doro's collaboration.

Researchain Logo
Decentralizing Knowledge