Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesco Fazi is active.

Publication


Featured researches published by Francesco Fazi.


Cell | 2005

A Minicircuitry Comprised of MicroRNA-223 and Transcription Factors NFI-A and C/EBPα Regulates Human Granulopoiesis

Francesco Fazi; Alessandro Rosa; Alessandro Fatica; Vania Gelmetti; Maria Laura De Marchis; Clara Nervi; Irene Bozzoni

MicroRNAs play important roles in cell differentiation by acting as translational inhibitors of specific target genes. Here we show that human granulocytic differentiation is controlled by a regulatory circuitry involving miR-223 and two transcriptional factors, NFI-A and C/EBPalpha. The two factors compete for binding to the miR-223 promoter: NFI-A maintains miR-223 at low levels, whereas its replacement by C/EBPalpha, following retinoic acid (RA)-induced differentiation, upregulates miR-223 expression. The competition by C/EBPalpha and the granulocytic differentiation are favored by a negative-feedback loop in which miR-223 represses NFI-A translation. In line with this, both RNAi against NFI-A and ectopic expression of miR-223 in acute promyelocytic leukemia (APL) cells enhance differentiation, whereas miR-223 knockdown inhibits the differentiation response to RA. Altogether, our data indicate that miR-223 plays a crucial role during granulopoiesis and point to the NFI-A repression as an important molecular pathway mediating gene reprogramming in this cell lineage.


Nature Structural & Molecular Biology | 2009

The execution of the transcriptional axis mutant p53, E2F1 and ID4 promotes tumor neo-angiogenesis

Giulia Fontemaggi; Stefania Dell'Orso; Daniela Trisciuoglio; Tal Shay; Elisa Melucci; Francesco Fazi; Irene Terrenato; Marcella Mottolese; Paola Muti; Eytan Domany; Donatella Del Bufalo; Sabrina Strano; Giovanni Blandino

ID4 (inhibitor of DNA binding 4) is a member of a family of proteins that function as dominant-negative regulators of basic helix-loop-helix transcription factors. Growing evidence links ID proteins to cell proliferation, differentiation and tumorigenesis. Here we identify ID4 as a transcriptional target of gain-of-function p53 mutants R175H, R273H and R280K. Depletion of mutant p53 protein severely impairs ID4 expression in proliferating tumor cells. The protein complex mutant p53–E2F1 assembles on specific regions of the ID4 promoter and positively controls ID4 expression. The ID4 protein binds to and stabilizes mRNAs encoding pro-angiogenic factors IL8 and GRO-α. This results in the increase of the angiogenic potential of cancer cells expressing mutant p53. These findings highlight the transcriptional axis mutant p53, E2F1 and ID4 as a still undefined molecular mechanism contributing to tumor neo-angiogenesis.


Cardiovascular Research | 2008

MicroRNA: Basic mechanisms and transcriptional regulatory networks for cell fate determination

Francesco Fazi; Clara Nervi

Characterization of regulatory mechanisms affecting microRNA (miRNA) expression and activity is providing novel clues for the identification of genes and complex regulatory circuits that determine cell and tissue specificity. Here, we review the molecular events leading to miRNA biogenesis and activity, focusing above all on endogenous and epigenetic transcriptional networks involving miRNA in early development, cellular lineage specification/differentiation of nervous, skeletal and cardiac muscle tissues and in haematopoiesis, as the de-regulation of such networks may be relevant to disease pathogenesis.


Cancer Research | 2006

Sequential valproic acid/all-trans retinoic acid treatment reprograms differentiation in refractory and high-risk acute myeloid leukemia

Giuseppe Cimino; Francesco Lo-Coco; Susanna Fenu; Lorena Travaglini; Erica Finolezzi; Marco Mancini; Mauro Nanni; Angela Careddu; Francesco Fazi; Fabrizio Padula; Roberto Fiorini; Maria Antonietta Aloe Spiriti; Maria Concetta Petti; Adriano Venditti; S. Amadori; Franco Mandelli; Pier Giuseppe Pelicci; Clara Nervi

Epigenetic alterations of chromatin due to aberrant histone deacetylase (HDAC) activity and transcriptional silencing of all-trans retinoic acid (ATRA) pathway are events linked to the pathogenesis of acute myeloid leukemia (AML) that can be targeted by specific treatments. A pilot study was carried out in eight refractory or high-risk AML patients not eligible for intensive therapy to assess the biological and therapeutic activities of the HDAC inhibitor valproic acid (VPA) used to remodel chromatin, followed by the addition of ATRA, to activate gene transcription and differentiation in leukemic cells. Hyperacetylation of histones H3 and H4 was detectable at therapeutic VPA serum levels (>or=50 microg/mL) in blood mononuclear cells from seven of eight patients. This correlated with myelomonocytic differentiation of leukemic cells as revealed by morphologic, cytochemical, immunophenotypic, and gene expression analyses. Differentiation of the leukemic clone was proven by fluorescence in situ hybridization analysis showing the cytogenetic lesion +8 or 7q- in differentiating cells. Hematologic improvement, according to established criteria for myelodysplastic syndromes, was observed in two cases. Stable disease and disease progression were observed in five and one cases, respectively. In conclusion, VPA-ATRA treatment is well tolerated and induces phenotypic changes of AML blasts through chromatin remodeling. Further studies are needed to evaluate whether VPA-ATRA treatment by reprogramming differentiation of the leukemic clone might improve the response to chemotherapy in leukemia patients.


Molecular and Cellular Biology | 2008

MBD3, a component of the NuRD complex, facilitates chromatin alteration and deposition of epigenetic marks.

Lluis Morey; Carmen Brenner; Francesco Fazi; Raffaella Villa; Arantxa Gutierrez; Marcus Buschbeck; Clara Nervi; Saverio Minucci; François Fuks; Luciano Di Croce

ABSTRACT In plants, as in mammals, mutations in SNF2-like DNA helicases/ATPases were shown to affect not only chromatin structure but also global methylation patterns, suggesting a potential functional link between chromatin structure and epigenetic marks. The SNF2-like ATPase containing nucleosome remodeling and deacetylase corepressor complex (NuRD) is involved in gene transcriptional repression and chromatin remodeling. We have previously shown that the leukemogenic protein PML-RARa represses target genes through recruitment of DNA methytransferases and Polycomb complex. Here, we demonstrate a direct role of the NuRD complex in aberrant gene repression and transmission of epigenetic repressive marks in acute promyelocytic leukemia (APL). We show that PML-RARa binds and recruits NuRD to target genes, including to the tumor-suppressor gene RARβ2. In turn, the NuRD complex facilitates Polycomb binding and histone methylation at lysine 27. Retinoic acid treatment, which is often used for patients at the early phase of the disease, reduced the promoter occupancy of the NuRD complex. Knockdown of the NuRD complex in leukemic cells not only prevented histone deacetylation and chromatin compaction but also impaired DNA and histone methylation, as well as stable silencing, thus favoring cellular differentiation. These results unveil an important role for NuRD in the establishment of altered epigenetic marks in APL, demonstrating an essential link between chromatin structure and epigenetics in leukemogenesis that could be exploited for therapeutic intervention.


Cell Death & Differentiation | 2012

MicroRNA-128-2 targets the transcriptional repressor E2F5 enhancing mutant p53 gain of function

Sara Donzelli; Giulia Fontemaggi; Francesco Fazi; S Di Agostino; Fabrizio Padula; Francesca Biagioni; P Muti; Sabrina Strano; Giovanni Blandino

p53 mutations have profound effects on non-small-cell lung cancer (NSCLC) resistance to chemotherapeutic treatments. Mutant p53 proteins are usually expressed at high levels in tumors, where they exert oncogenic functions. Here we show that p53R175H, a hotspot p53 mutant, induces microRNA (miRNA)-128-2 expression. Mutant p53 binds to the putative promoter of miR128-2 host gene, ARPP21, determining a concomitant induction of ARPP21 mRNA and miR-128-2. miR-128-2 expression in lung cancer cells inhibits apoptosis and confers increased resistance to cisplatin, doxorubicin and 5-fluorouracyl treatments. At the molecular level, miR-128-2 post-transcriptionally targets E2F5 and leads to the abrogation of its repressive activity on p21waf1 transcription. p21waf1 protein localizes to the cytoplasmic compartment, where it exerts an anti-apoptotic effect by preventing pro-caspase-3 cleavage. This study emphasizes miRNA-128-2 role as a master regulator in NSCLC chemoresistance.


Oncogene | 2005

Retinoic acid targets DNA-methyltransferases and histone deacetylases during APL blast differentiation in vitro and in vivo.

Francesco Fazi; Lorena Travaglini; Daniela Carotti; Franco Palitti; Daniela Diverio; Myriam Alcalay; Suzan McNamara; Wilson H. Miller; Francesco Lo Coco; Pier Giuseppe Pelicci; Clara Nervi

The acute promyelocytic leukemia (PML)-retinoic acid receptor α (RARα) fusion product recruits histone deacetylase (HDAC) and DNA methyltransferase (DNMT) activities on retinoic acid (RA)-target promoters causing their silencing and differentiation block. RA treatment induces epigenetic modifications at its target loci and restores myeloid differentiation of APL blasts. Using RA-sensitive and RA-resistant APL cell lines and primary blasts, we addressed the functional relevance of the aberrant methylation status at the RA-target promoter RARβ2 and the mechanism by which methylation is reversed by RA. RA decreased DNMT expression and activity, which correlated with demethylation at specific sites on RARβ2 promoter/exon-1, and the ability of APL blasts to differentiate in vitro and in vivo. None of these events occurred in an RA-resistant APL cell line containing a PML-RARα defective for ligand binding. The specific contribution of the HDAC and DNMT pathways to the response of APL cells to RA was also tested by inhibiting these enzymatic activities with TSA and/or 5-azacytidine. In RA-responsive and RA-resistant APL blasts, TSA and 5-azacytidine induced specific changes on the chromatin state at RA-target sites, increased the RA effect on promoter activity, endogenous RA-target gene expression and differentiation. These results extend the rationale for chromatin-targeted treatment in APL and RA-resistant leukemias.


Journal of Hematology & Oncology | 2012

MiR-424 and miR-155 deregulated expression in cytogenetically normal acute myeloid leukaemia: correlation with NPM1 and FLT3 mutation status

Isabella Faraoni; Serena Laterza; Davide Ardiri; Claudia Ciardi; Francesco Fazi; Francesco Lo-Coco

BackgroundMicroRNA have a central role in normal haematopoiesis and are deregulated in acute myeloid leukaemia (AML). The purpose of the study was to investigate by qRT-PCR the expression of miRNAs involved in myeloid differentiation (miR-424, miR-155, miR-223, miR-17-5p) in 48 patients with cytogenetically normal AML well characterized for NPM1 and/or FLT3 mutations. Three types of normalization were used for the data validation.FindingsWe found that miR-424 was down-modulated in AMLs with NPM1mutA regardless of FLT3 status. On the contrary, miR-155 showed up-regulation in patients with FLT3 internal tandem duplications (ITD) with or without NPM1 mutations. No significant associations were found by analyzing miR-223 and miR-17-5p in relation to FLT3 and NPM1 status.ConclusionsThis study supports the view that major genetic subsets of CN-AML are associated with distinct miRNA signatures and suggests that miR-424 and miR-155 deregulation is involved in the pathogenesis of CN-AML with NPM1 and FLT3-ITD mutations, respectively.


Genes & Cancer | 2011

Critical Role of c-Myc in Acute Myeloid Leukemia Involving Direct Regulation of miR-26a and Histone Methyltransferase EZH2

Beatrice Salvatori; Ilaria Iosue; Nkerorema Djodji Damas; Arianna Mangiavacchi; Sabina Chiaretti; Monica Messina; Fabrizio Padula; Anna Guarini; Irene Bozzoni; Francesco Fazi; Alessandro Fatica

Increased expression or aberrant activation of c-Myc plays an important role in leukemogenesis. Here, we show that in acute myeloid leukemia (AML), c-Myc directly controls the expression of EZH2, a component of the Polycomb repressive complex 2, and miR-26a. miR-26a is downregulated in primary blasts from AML patients and, during myeloid differentiation of AML cells, is induced together with a decrease in c-Myc and Ezh2 levels. Previously, EZH2 was shown to be regulated by miR-26a at the translational levels in lymphomas. However, we demonstrate that in AML, the variation of EZH2 mainly depends on c-Myc transcriptional control. We also show that enforced expression of miR-26a in AML cells is able to inhibit cell cycle progression by downregulating cyclin E2 expression. In addition, increased levels of miR-26a potentiate the antiproliferative effects of 1,25-dihydroxyvitamin D(3) (VitD) and stimulate myeloid differentiation. Our results identify new molecular targets of c-Myc in AML and highlight miR-26a attractiveness as a therapeutic target in leukemia.


Cell Research | 2005

Dynamic and reversibility of heterochromatic gene silencing in human disease

Giuseppe Zardo; Francesco Fazi; Lorena Travaglini; Clara Nervi

ABSTRACTIn eukaryotic organisms cellular fate and tissue specific gene expression are regulated by the activity of proteins known as transcription factors that by interacting with specific DNA sequences direct the activation or repression of target genes. The post genomic era has shown that transcription factors are not the unique key regulators of gene expression. Epigenetic mechanisms such as DNA methylation, post-translational modifications of histone proteins, remodeling of nucleosomes and expression of small regulatory RNAs also contribute to regulation of gene expression, determination of cell and tissue specificity and assurance of inheritance of gene expression levels. The relevant contribution of epigenetic mechanisms to a proper cellular function is highlighted by the effects of their deregulation that cooperate with genetic alterations to the development of various diseases and to the establishment and progression of tumors.

Collaboration


Dive into the Francesco Fazi's collaboration.

Top Co-Authors

Avatar

Clara Nervi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Silvia Masciarelli

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ilaria Iosue

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Alessandro Fatica

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Francesco Lo-Coco

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Teresa Bellissimo

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Fabrizio Padula

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Gianni Colotti

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge