Giulia Fontemaggi
University of Perugia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Giulia Fontemaggi.
Molecular Cell | 2002
Antonio Costanzo; Paola Merlo; N. Pediconi; Marcella Fulco; Vittorio Sartorelli; Philip A. Cole; Giulia Fontemaggi; Maurizio Fanciulli; Louis Schiltz; Giovanni Blandino; Clara Balsano; Massimo Levrero
The tumor suppressor p53 and its close relative p73 are activated in response to DNA damage resulting in either cell cycle arrest or apoptosis. Here, we show that DNA damage induces the acetylation of p73 by the acetyltransferase p300. Inhibiting the enzymatic activity of p300 hampers apoptosis in a p53(-/-) background. Furthermore, a nonacetylatable p73 is defective in activating transcription of the proapoptotic p53AIP1 gene but retains an intact ability to regulate other targets such as p21. Finally, p300-mediated acetylation of p73 requires the protooncogene c-abl. Our results suggest that DNA damage-induced acetylation potentiates the apoptotic function of p73 by enhancing the ability of p73 to selectively activate the transcription of proapoptotic target genes.
Oncogene | 2007
Sabrina Strano; Stefania Dell'Orso; S Di Agostino; Giulia Fontemaggi; Ada Sacchi; Giovanni Blandino
Inactivation of tumor-suppressor genes is one of the key hallmarks of a tumor. Unlike other tumor-suppressor genes, p53 is inactivated by missense mutations in half of all human cancers. It has become increasingly clear that the resulting mutant p53 proteins do not represent only the mere loss of wild-type p53 tumor suppressor activity, but gain new oncogenic properties favoring the insurgence, the maintenance, the spreading and the chemoresistance of malignant tumors. The actual challenge is the fine deciphering of the molecular mechanisms underlying the gain of function of mutant p53 proteins. In this review, we will focus mainly on the transcriptional activity of mutant p53 proteins as one of the potential molecular mechanisms. To date, the related knowledge is still quite scarce and many of the raised questions of this review are yet unanswered.
Cancer Cell | 2010
Perry Stambolsky; Yuval Tabach; Giulia Fontemaggi; Lilach Weisz; Revital Maor-Aloni; Zahava Sigfried; Idit Shiff; Ira Kogan; Moshe Shay; Eyal Kalo; Giovanni Blandino; Itamar Simon; Moshe Oren; Varda Rotter
The p53 gene is mutated in many human tumors. Cells of such tumors often contain abundant mutant p53 (mutp53) protein, which may contribute actively to tumor progression via a gain-of-function mechanism. We applied ChIP-on-chip analysis and identified the vitamin D receptor (VDR) response element as overrepresented in promoter sequences bound by mutp53. We report that mutp53 can interact functionally and physically with VDR. Mutp53 is recruited to VDR-regulated genes and modulates their expression, augmenting the transactivation of some genes and relieving the repression of others. Furthermore, mutp53 increases the nuclear accumulation of VDR. Importantly, mutp53 converts vitamin D into an antiapoptotic agent. Thus, p53 status can determine the biological impact of vitamin D on tumor cells.
Nature Structural & Molecular Biology | 2009
Giulia Fontemaggi; Stefania Dell'Orso; Daniela Trisciuoglio; Tal Shay; Elisa Melucci; Francesco Fazi; Irene Terrenato; Marcella Mottolese; Paola Muti; Eytan Domany; Donatella Del Bufalo; Sabrina Strano; Giovanni Blandino
ID4 (inhibitor of DNA binding 4) is a member of a family of proteins that function as dominant-negative regulators of basic helix-loop-helix transcription factors. Growing evidence links ID proteins to cell proliferation, differentiation and tumorigenesis. Here we identify ID4 as a transcriptional target of gain-of-function p53 mutants R175H, R273H and R280K. Depletion of mutant p53 protein severely impairs ID4 expression in proliferating tumor cells. The protein complex mutant p53–E2F1 assembles on specific regions of the ID4 promoter and positively controls ID4 expression. The ID4 protein binds to and stabilizes mRNAs encoding pro-angiogenic factors IL8 and GRO-α. This results in the increase of the angiogenic potential of cancer cells expressing mutant p53. These findings highlight the transcriptional axis mutant p53, E2F1 and ID4 as a still undefined molecular mechanism contributing to tumor neo-angiogenesis.
Molecular and Cellular Biology | 2001
Giulia Fontemaggi; Aymone Gurtner; Sabrina Strano; Yujiro Higashi; Ada Sacchi; Giulia Piaggio; Giovanni Blandino
ABSTRACT The newly discovered p73 gene encodes a nuclear protein that has high homology with p53. Furthermore, ectopic expression of p73 in p53+/+ and p53−/− cancer cells recapitulates some of the biological activities of p53 such as growth arrest, apoptosis, and differentiation. p73−/−-deficient mice exhibit severe defects in proper development of the central nervous system and pheromone sensory pathway. They also suffer from inflammation and infections. Here we studied the transcriptional regulation of p73 at the crossroad between proliferation and differentiation. p73 mRNA is undetectable in proliferating C2C12 cells and is expressed at very low levels in undifferentiated P19 and HL60 cells. Conversely, it is upregulated during muscle and neuronal differentiation as well as in response to tetradecanoyl phorbol acetate-induced monocytic differentiation of HL60 cells. We identified a 1-kb regulatory fragment located within the first intron of p73, which is positioned immediately upstream to the ATG codon of the second exon. This fragment exerts silencer activity on p73 as well as on heterologous promoters. The p73 intronic fragment contains six consensus binding sites for transcriptional repressor ZEB, which binds these sites in vitro and in vivo. Ectopic expression of dominant-negative ZEB (ZEB-DB) restores p73 expression in proliferating C2C12 and P19 cells. Thus, transcriptional repression of p73 expression by ZEB binding may contribute to the modulation of p73 expression during differentiation.
FEBS Letters | 2001
Sabrina Strano; Mario Rossi; Giulia Fontemaggi; Eliana Munarriz; Silvia Soddu; Ada Sacchi; Giovanni Blandino
In this review we will mainly focus on similarities and differences as well as relationships among p63, p73 and p53.
Cell Death & Differentiation | 2012
Sara Donzelli; Giulia Fontemaggi; Francesco Fazi; S Di Agostino; Fabrizio Padula; Francesca Biagioni; P Muti; Sabrina Strano; Giovanni Blandino
p53 mutations have profound effects on non-small-cell lung cancer (NSCLC) resistance to chemotherapeutic treatments. Mutant p53 proteins are usually expressed at high levels in tumors, where they exert oncogenic functions. Here we show that p53R175H, a hotspot p53 mutant, induces microRNA (miRNA)-128-2 expression. Mutant p53 binds to the putative promoter of miR128-2 host gene, ARPP21, determining a concomitant induction of ARPP21 mRNA and miR-128-2. miR-128-2 expression in lung cancer cells inhibits apoptosis and confers increased resistance to cisplatin, doxorubicin and 5-fluorouracyl treatments. At the molecular level, miR-128-2 post-transcriptionally targets E2F5 and leads to the abrogation of its repressive activity on p21waf1 transcription. p21waf1 protein localizes to the cytoplasmic compartment, where it exerts an anti-apoptotic effect by preventing pro-caspase-3 cleavage. This study emphasizes miRNA-128-2 role as a master regulator in NSCLC chemoresistance.
Oncogene | 2014
S Masciarelli; Giulia Fontemaggi; S Di Agostino; Sara Donzelli; E Carcarino; Sabrina Strano; Giovanni Blandino
Mutant p53 proteins are expressed at high frequency in human tumors and are associated with poor clinical prognosis and resistance to chemotherapeutic treatments. Here we show that mutant p53 proteins downregulate micro-RNA (miR)-223 expression in breast and colon cancer cell lines. Mutant p53 binds the miR-223 promoter and reduces its transcriptional activity. This requires the transcriptional repressor ZEB-1. We found that miR-223 exogenous expression sensitizes breast and colon cancer cell lines expressing mutant p53 to treatment with DNA-damaging drugs. Among the putative miR-223 targets, we focused on stathmin-1 (STMN-1), an oncoprotein known to confer resistance to chemotherapeutic drugs associated with poor clinical prognosis. Mutant p53 silencing or miR-223 exogenous expression lowers the levels of STMN-1 and knockdown of STMN-1 by small interfering RNA increases cell death of mutant p53-expressing cell lines. On the basis of these findings, we propose that one of the pathways affected by mutant p53 to increase cellular resistance to chemotherapeutic agents involves miR-223 downregulation and the consequent upregulation of STMN-1.
Embo Molecular Medicine | 2012
Francesca Biagioni; Noa Bossel Ben-Moshe; Giulia Fontemaggi; Valeria Canu; Federica Mori; Barbara Antoniani; Anna Di Benedetto; Raffaela Santoro; S. Germoni; Fernanda De Angelis; Anna Cambria; Roi Avraham; G. Grasso; Sabrina Strano; Paola Muti; Marcella Mottolese; Yosef Yarden; Eytan Domany; Giovanni Blandino
Deregulated proliferation is a hallmark of cancer cells. Here, we show that microRNA‐10b* is a master regulator of breast cancer cell proliferation and is downregulated in tumoural samples versus matched peritumoural counterparts. Two canonical CpG islands (5 kb) upstream from the precursor sequence are hypermethylated in the analysed breast cancer tissues. Ectopic delivery of synthetic microRNA‐10b* in breast cancer cell lines or into xenograft mouse breast tumours inhibits cell proliferation and impairs tumour growth in vivo, respectively. We identified and validated in vitro and in vivo three novel target mRNAs of miR‐10b* (BUB1, PLK1 and CCNA2), which play a remarkable role in cell cycle regulation and whose high expression in breast cancer patients is associated with reduced disease‐free survival, relapse‐free survival and metastasis‐free survival when compared to patients with low expression. This also suggests that restoration of microRNA‐10b* expression might have therapeutic promise.
Oncogene | 2003
Anna Alisi; Stefania Giambartolomei; Felicia Cupelli; Paola Merlo; Giulia Fontemaggi; Alessandra Spaziani; C. Balsano
Hepatitis C virus (HCV) core protein is a structural viral protein that packages the viral genomic RNA. In addition to this function, HCV core also modulates a number of cellular regulatory functions. In fact, HCV core protein has been found to modulate the expression of the cyclin-dependent inhibitor p21WAF1/CIP1 and to promote both apoptosis and cell proliferation through its physical interaction with p53. Here, we studied the ability of HCV core to bind the p53-related p73 protein, its isoforms and its deletion mutants. We found that HCV core co-immunoprecipitated with p73 in HepG2 and SAOS-2 cells. Deletion mutational analysis of p73 indicates that the domain involved in HCV core binding is located between amino-acid residues 321–353. We also demonstrate that p73/core interaction results in the nuclear translocation of HCV core protein either in the presence of the p73 α or p73 β tumor-suppressor proteins. In addition, the interaction with HCV core protein prevents p73 α, but not p73 β dependent cell growth arrest in a p53-dependent manner. Our findings demonstrate that HCV core protein may directly influence the various p73 functions, thus playing a role in HCV pathogenesis.