Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesco Fiz is active.

Publication


Featured researches published by Francesco Fiz.


The Journal of Nuclear Medicine | 2013

Metformin Temporal and Localized Effects on Gut Glucose Metabolism Assessed Using 18F-FDG PET in Mice

Michela Massollo; Cecilia Marini; Massimo Brignone; Laura Emionite; Barbara Salani; Mattia Riondato; Selene Capitanio; Francesco Fiz; Alessia Democrito; Adriana Amaro; Silvia Morbelli; Michele Piana; Davide Maggi; Michele Cilli; Ulrich Pfeffer; Gianmario Sambuceti

In the course of metformin treatment, staging abdominal cancer lesions with 18F-FDG PET images is often hindered by the presence of a high bowel radioactivity. The present study aimed to verify the mechanism underlying this phenomenon. Methods: Fifty-three mice were submitted to dynamic acquisitions of 18F-FDG kinetics under fasting conditions. Three small-animal PET scans were obtained over a 4-mo study period. The animals were subdivided into 4 groups according to the following metformin administration protocol: group 1, untreated mice (n = 15); group 2, mice exposed to metformin treatment (750 mg/kg/d) for the 48 h before each PET study (pulsed, n = 10); group 3, mice treated for the whole study period (prolonged, n = 10); and group 4, mice in which prolonged treatment was interrupted 48 h before PET (interrupted, n = 8). The rate constant of 18F-FDG uptake was estimated by Patlak analysis. At the end of the study, the ileum and colon were harvested, washed, and counted ex vivo. Two further groups, of 5 animals each, were included to evaluate the effect of prolonged metformin treatment on phosphorylated adenosine monophosphate (AMP)–activated protein kinase (pAMPK) form and gene expression for thioredoxin-interacting protein (TXNIP). Results: Pulsed treatment did not modify gut tracer retention with respect to the untreated group. Conversely, prolonged treatment induced a progressive increase in 18F-FDG uptake that selectively involved the colonic wall, without any significant contamination of bowel content. This effect persisted after a complete drug washout in the interrupted group. These responses were paralleled by increased pAMPK availability and by reduced expression of TXNIP messenger RNA in colonic enterocytes exposed to prolonged metformin treatment. Conclusion: Metformin causes a selective increase in colonic 18F-FDG uptake. This effect appears after a relatively long period of treatment and persists soon after drug washout. Accordingly, the increased bowel glucose metabolism reflects a biologic response to chronic metformin treatment characterized by increased levels of pAMPK and reduced levels of TXNIP.


The Journal of Nuclear Medicine | 2015

18F-NaF Uptake by Atherosclerotic Plaque on PET/CT Imaging: Inverse Correlation Between Calcification Density and Mineral Metabolic Activity

Francesco Fiz; Silvia Morbelli; Arnoldo Piccardo; Matteo Bauckneht; Giulia Ferrarazzo; Emanuela Pestarino; Manlio Cabria; Alessia Democrito; Mattia Riondato; Giampiero Villavecchia; Cecilia Marini; Gianmario Sambuceti

Several studies have highlighted the role of vascular 18F-NaF uptake as a marker of ongoing calcium deposition. However, accumulation of 18F-NaF is often inconsistent with localization of arterial plaque. Calcification activity and thus 18F-NaF uptake might prevail in the earlier plaque stages. To test this hypothesis, we evaluated 18F-NaF uptake in plaque of 3 different densities, using density as a marker of calcification progression. We also tested whether attenuation-weighted image reconstruction affects 18F-NaF uptake in the different plaque stages. Methods: Sixty-four oncologic patients (14 men and 50 women; mean age, 65.3 ± 8.2 y; range, 26–81 y) underwent 18F-NaF PET/CT. A volume of interest was drawn on each plaque within the infrarenal aorta to assess mean standardized uptake value and attenuation (in Hounsfield units [HU]). Plaque was then categorized as light (<210 HU), medium (211–510 HU), or heavy (>510 HU). Standardized uptake value was normalized for blood 18F-NaF activity to obtain the plaque target-to-background ratio (TBR). During this process, several focal, noncalcified areas of 18F-NaF were identified (hot spots). The TBR of the hot spots was computed after isocontour thresholding. The TBR of a noncalcified control region was also calculated. In 35 patients, the TBR of non–attenuation-corrected images was calculated. Results: The average TBR was highest in light plaque (2.21 ± 0.88), significantly lower in medium plaque (1.59 ± 0.63, P < 0.001), and lower still in heavy plaque (1.14 ± 0.37, P < 0.0001 with respect to both light and medium plaque). The TBR of the control region was not significantly different from that of heavy plaque but was significantly lower than that of light and medium plaque (P < 0.01). Hot spots had the highest absolute TBR (3.89 ± 1.87, P < 0.0001 vs. light plaque). TBRs originating from non–attenuation-corrected images did not significantly differ from those originating from attenuation-corrected images. Conclusion: Our results support the concept that 18F-NaF is a feasible option in imaging molecular calcium deposition in the early stages of plaque formation, when active uptake mechanisms are the main determinants of calcium presence, but that retention of 18F-NaF progressively decreases with increasing calcium deposition in the arterial wall. Our data suggest that non–attenuation-corrected reconstruction does not significantly affect evaluation of plaque of any thickness.


International Journal of Cardiovascular Imaging | 2014

Divergent determinants of 18F–NaF uptake and visible calcium deposition in large arteries: relationship with Framingham risk score

Silvia Morbelli; Francesco Fiz; Arnoldo Piccardo; Lorena Picori; Michela Massollo; Emanuela Pestarino; Cecilia Marini; Manlio Cabria; Alessia Democrito; Giuseppe Cittadini; Giampiero Villavecchia; Paolo Bruzzi; Abass Alavi; Gianmario Sambuceti

To compare regional vascular distribution and biological determinants of visible calcium load, as assessed by computed tomography, as well as of molecular calcium deposition as assessed by 18F–NaF positron emission tomography. Eighty oncologic patients undergoing 18F–NaF PET/CT scan were included in the study. Cardiovascular-risk stratification was performed according to a simplified version of the Framingham model [including age, diabetes, smoking, systolic blood pressure and body mass index (BMI)]. Arterial 18F–NaF uptake was measured by drawing regions of interest comprising the arteries on each slice of the transaxial PET/CT and normalized to blood 18F–NaF activity to obtain the arterial target-to-background ratio (TBR). The degree of arterial calcification (AC) was measured using a software program providing Agatston-like scores. Differences in mean values and regression analysis were tested. Predictors of AC and TBR were evaluated by univariate and multivariate analysis. p value of 0.05 was considered statistically significant. No correlation was documented between regional calcium load and regional TBR in any of the studied arterial segments. Visible calcium deposition was found to be dependent upon age while it was not influenced by all the remaining determinants of cardiovascular risk. By contrast, 18F–NaF uptake was significantly correlated with all descriptors of cardiovascular risk, with the exception of BMI. Vascular 18F–NaF uptake displays a different regional distribution, as well as different biological predictors, when compared to macroscopic AC. The tight dependency of tracer retention upon ongoing biological determinants of vascular damage suggests that this tool might provide an unexplored window on plaque pathophysiology.


Blood | 2015

Allogeneic cell transplant expands bone marrow distribution by colonizing previously abandoned areas: an FDG PET/CT analysis.

Francesco Fiz; Cecilia Marini; Cristina Campi; Anna Maria Massone; Marina Podestà; Gianluca Bottoni; Roberta Piva; Francesca Bongioanni; Andrea Bacigalupo; Michele Piana; Gianmario Sambuceti; Francesco Frassoni

Mechanisms of hematopoietic reconstitution after bone marrow (BM) transplantation remain largely unknown. We applied a computational quantification software application to hybrid 18F-fluorodeoxyglucose positron emission tomography (PET)/computed tomography (CT) images to assess activity and distribution of the hematopoietic system throughout the whole skeleton of recently transplanted patients. Thirty-four patients underwent PET/CT 30 days after either adult stem cell transplantation (allogeneic cell transplantation [ACT]; n = 18) or cord blood transplantation (CBT; n = 16). Our software automatically recognized compact bone volume and trabecular bone volume (IBV) in CT slices. Within IBV, coregistered PET data were extracted to identify the active BM (ABM) from the inactive tissue. Patients were compared with 34 matched controls chosen among a published normalcy database. Whole body ABM increased in ACT and CBT when compared with controls (12.4 ± 3 and 12.8 ± 6.8 vs 8.1 ± 2.6 mL/kg of ideal body weight [IBW], P < .001). In long bones, ABM increased three- and sixfold in CBT and ACT, respectively, compared with controls (0.9 ± 0.9 and 1.7 ± 2.5 vs 0.3 ± 0.3 mL/kg IBW, P < .01). These data document an unexpected distribution of transplanted BM into previously abandoned BM sites.


Radiology | 2014

Adult Advanced Chronic Lymphocytic Leukemia: Computational Analysis of Whole-Body CT Documents a Bone Structure Alteration

Francesco Fiz; Cecilia Marini; Roberta Piva; Maurizio Miglino; Michela Massollo; Francesca Bongioanni; Silvia Morbelli; Gianluca Bottoni; Cristina Campi; Bacigalupo A; Paolo Bruzzi; Francesco Frassoni; Michele Piana; Gianmario Sambuceti

PURPOSE To assess the presence of alteration of bone structure and bone marrow metabolism in adult patients who were suspected of having advanced chronic lymphocytic leukemia (ACLL) by using a computational prognostic model that was based on computational analysis of positron emission tomography (PET)/computed tomography (CT) images. MATERIALS AND METHODS In this retrospective study, all patients signed written informed consent as a requisite to undergo PET/CT examination. However, due to its observational nature, approval from the ethical committee was not deemed necessary. Twenty-two previously untreated chronic lymphocytic leukemia patients underwent PET/CT for disease progression. PET/CT images were analyzed by using dedicated software, capable of recognizing an external 2-pixel bone ring whose Hounsfield coefficient served as cutoff to recognize trabecular and compact bone. PET/CT data from 22 age- and sex-matched control subjects were used as comparison. All data are reported as means ± standard deviations. The Student t test, log-rank, or Cox proportional hazards model were used as appropriate, considering a difference with a P value of less than .05 as significant. RESULTS Trabecular bone was expanded in ACLL patients and occupied a larger fraction of the skeleton with respect to control subjects (mean, 39% ± 5 [standard deviation] vs 31% ± 7; ie, 32 of 81 mL/kg of ideal body weight vs 27 of 86 mL/kg of ideal body weight, respectively; P < .001). After stratification according to median value, patients with a ratio of trabecular to skeletal bone volume of more than 37.3% showed an actuarial 2-year survival of 18%, compared with 82% for those with a ratio of less than 37.3% (P < .001), independent from age, sex, biological markers, and disease duration. CONCLUSION These data suggest that computational assessment of skeletal alterations might represent a new window for prediction of the clinical course of the disease.


BioMed Research International | 2012

Intrabone Transplant of Cord Blood Stem Cells Establishes a Local Engraftment Store: A Functional PET/FDG Study

Cecilia Marini; Marina Podestà; Michela Massollo; Selene Capitanio; Francesco Fiz; Silvia Morbelli; Massimo Brignone; Bacigalupo A; Michele Piana; Francesco Frassoni; Gianmario Sambuceti

Background. Despite advancements in comprehension of molecular mechanisms governing bone marrow (BM) homing of hematopoietic stem cells, cord blood transplant (CBT) suffers from a slow rate of hematopoietic recovery. Intrabone (IB) injection has been proposed as a method able to improve speed of BM engraftment with respect to conventional IV protocols. However, the mechanisms underlying this benefit are largely unknown. Aim. To verify whether IB-CBT determines a local engraftment able to predict the reconstitution of recipient hematopoiesis. Design and Methods. Twenty-one patients with hematologic malignancies received IB injection into both iliac crests of 3.2 ± 0.68 ∗ 107/kg cord blood cells. One month following IB-CBT, PET-CT imaging was performed. Maximal standardized uptake values (SUVs) were assessed in BM of both iliac crests and in all lumbar vertebrae. Results. Maximal SUV within iliac crests was higher than in lumbar vertebrae (4.1 ± 1.7 versus 3.2 ± 0.7, resp., P = 0.01). However, metabolic activity in these two different BM districts was significantly correlated (r = 0.7, P < 0.001). Moreover, FDG uptake values within the injection site closely predicted platelet recovery 100 days after IB-CBT (r = 0.72, P < 0.01). Conclusions. The metabolic activity of injected BM predicts the subsequent rate of hematopoietic recovery after IB-CBT, suggesting a pivotal role of the local engraftment in the reconstitution of recipient hematopoiesis.


The Journal of Nuclear Medicine | 2017

Doxorubicin effect on myocardial metabolism as a prerequisite for subsequent development of cardiac toxicity: A translational18F-FDG PET/CT observation

Matteo Bauckneht; Giulia Ferrarazzo; Francesco Fiz; Silvia Morbelli; Matteo Sarocchi; Fabio Pastorino; Alberto Ghidella; Elena Pomposelli; Maurizio Miglino; Pietro Ameri; Laura Emionite; Flavia Ticconi; Eleonora Arboscello; Ambra Buschiazzo; Elena Augusta Massimelli; Salvatore Fiordoro; Anna Borra; Vanessa Cossu; Annalisa Bozzano; Adalberto Ibatici; Mirco Ponzoni; Paolo Spallarossa; Andrea Gallamini; Paolo Bruzzi; Gianmario Sambuceti; Cecilia Marini

The present translational study aimed to verify whether serial 18F-FDG PET/CT predicts doxorubicin cardiotoxicity. Methods: Fifteen athymic mice were treated intravenously with saline (n = 5) or with 5 or 7.5 mg of doxorubicin per kilogram (n = 5 each) and underwent dynamic small-animal PET beforehand and afterward to estimate left ventricular (LV) metabolic rate of glucose (MRGlu). Thereafter, we retrospectively identified 69 patients who had been successfully treated with a regimen of doxorubicin, bleomycin, vinblastine, and dacarbazine for Hodgkin disease (HD) and had undergone 4 consecutive 18F-FDG PET/CT scans. Volumes of interest were drawn on LV myocardium to quantify mean SUV. All patients were subsequently interviewed by telephone (median follow-up, 30 mo); 36 of them agreed to undergo electrocardiography and transthoracic echocardiography. Results: In mice, LV MRGlu was 17.9 ± 4.4 nmol × min−1 × g−1 at baseline. Doxorubicin selectively and dose-dependently increased this value in the standard-dose (27.9 ± 9 nmol × min−1 × g−1, P < 0.05 vs. controls) and high-dose subgroups (37.2 ± 7.8 nmol × min−1 × g−1, P < 0.01 vs. controls, P < 0.05 vs. standard-dose). In HD patients, LV SUV showed a progressive increase during doxorubicin treatment that persisted at follow-up. New-onset cardiac abnormalities appeared in 11 of 36 patients (31%). In these subjects, pretherapy LV SUV was markedly lower with respect to the remaining patients (1.53 ± 0.9 vs. 3.34 ± 2.54, respectively, P < 0.01). Multivariate analysis confirmed the predictive value of baseline LV SUV for subsequent cardiac abnormalities. Conclusion: Doxorubicin dose-dependently increases LV MRGlu, particularly in the presence of low baseline 18F-FDG uptake. These results imply that low myocardial 18F-FDG uptake before the initiation of doxorubicin chemotherapy in HD patients may predict the development of chemotherapy-induced cardiotoxicity, suggesting that prospective clinical trials are warranted to test this hypothesis.


Scientific Reports | 2017

Functional Activation of Osteoclast Commitment in Chronic Lymphocytic Leukaemia: A Possible Role for RANK/RANKL Pathway

Cecilia Marini; Silvia Bruno; Francesco Fiz; Cristina Campi; Roberta Piva; Giovanna Cutrona; Serena Matis; Alberto Nieri; Maurizio Miglino; Adalberto Ibatici; Anna Maria Orengo; Anna Maria Massone; C. E. Neumaier; Daniela de Totero; Paolo Giannoni; Matteo Bauckneht; Michele Pennone; Claudya Tenca; Elena Gugiatti; Alessandro Bellini; Anna Borra; Elisabetta Tedone; Hülya Efetürk; Francesca Rosa; Laura Emionite; Michele Cilli; Davide Bagnara; Valerio Brucato; Paolo Bruzzi; Michele Piana

Skeletal erosion has been found to represent an independent prognostic indicator in patients with advanced stages of chronic lymphocytic leukaemia (CLL). Whether this phenomenon also occurs in early CLL phases and its underlying mechanisms have yet to be fully elucidated. In this study, we prospectively enrolled 36 consecutive treatment-naïve patients to analyse skeletal structure and bone marrow distribution using a computational approach to PET/CT images. This evaluation was combined with the analysis of RANK/RANKL loop activation in the leukemic clone, given recent reports on its role in CLL progression. Bone erosion was particularly evident in long bone shafts, progressively increased from Binet stage A to Binet stage C, and was correlated with both local expansion of metabolically active bone marrow documented by FDG uptake and with the number of RANKL + cells present in the circulating blood. In immune-deficient NOD/Shi-scid, γcnull (NSG) mice, administration of CLL cells caused an appreciable compact bone erosion that was prevented by Denosumab. CLL cell proliferation in vitro correlated with RANK expression and was impaired by Denosumab-mediated disruption of the RANK/RANKL loop. This study suggests an interaction between CLL cells and stromal elements able to simultaneously impair bone structure and increase proliferating potential of leukemic clone.


Frontiers in Oncology | 2017

Impact of Close and Positive Margins in Transoral Laser Microsurgery for Tis–T2 Glottic Cancer

Ivana Fiz; Francesco Mazzola; Francesco Fiz; Filippo Marchi; Marta Filauro; Alberto Paderno; Giampiero Parrinello; Cesare Piazza; Giorgio Peretti

Introduction Transoral laser microsurgery (TLM) represents one of the most effective treatment strategies for Tis–T2 glottic squamous cell carcinomas (SCC). The prognostic influence of close/positive margins is still debated, and the role of narrow band imaging (NBI) in their intraoperative definition is still to be validated on large cohort of patients. This study analyzed the influence of margin status on recurrence-free survival (RFS) and disease-specific survival (DSS). Methods We retrospectively studied 507 cases of pTis–T1b (Group A) and 127 cases of pT2 (Group B) glottic SCC. We identified the following margin status: negative (n = 232), close superficial (n = 79), close deep (CD) (n = 35), positive single superficial (n = 146), positive multiple superficial (n = 94), and positive deep (n = 48) and analyzed their impact on RFS and DSS. Close margins were defined by tumor-margin distance <1 mm. Pre-TLM margins were defined by white light in 323 patients, whereas NBI was employed in 311 patients. Results In Group A, DSS and RFS were reduced in positive multiple superficial and positive deep margins (DSS = 96.1 and 97%, both p < 0.05; RFS = 72%, p < 0.001 and 75.8%, p < 0.01). In Group B, DSS was reduced in positive multiple superficial margins (82.4%, p < 0.05). RFS was reduced in positive single superficial, positive multiple superficial, and positive deep margins (62.5, 41.2, and 53.3%, p < 0.01). In the entire population, RFS was reduced in CD margins (77.1%, p < 0.05). Use of NBI led to improvement in RFS and DSS. Conclusion The study indicates that close and positive single superficial margins do not affect DSS. By contrast, all types of margin positivity predict the occurrence of relapses, albeit with different likelihood, depending on stage/margin type. CD margins should be considered as a single risk factor. Use of NBI granted better intraoperative margins definition.


Diagnostics | 2017

A Score-Based Approach to 18F-FDG PET Images as a Tool to Describe Metabolic Predictors of Myocardial Doxorubicin Susceptibility

Matteo Bauckneht; Silvia Morbelli; Francesco Fiz; Giulia Ferrarazzo; Roberta Piva; Alberto Nieri; Matteo Sarocchi; Paolo Spallarossa; Maria Canepari; Eleonora Arboscello; Andrea Bellodi; Massimo Massaia; Andrea Gallamini; Paolo Bruzzi; Cecilia Marini; Gianmario Sambuceti

Purpose: To verify the capability of 18F-fluorodeoxy-glucose positron emission tomography/computed tomography (FDG-PET/CT) to identify patients at higher risk of developing doxorubicin (DXR)-induced cardiotoxicity, using a score-based image approach. Methods: 36 patients underwent FDG-PET/CT. These patients had shown full remission after DXR-based chemotherapy for Hodgkin’s disease (DXR dose: 40–50 mg/m2 per cycle), and were retrospectively enrolled. Inclusion criteria implied the presence of both pre- and post-chemotherapy clinical evaluation encompassing electrocardiogram (ECG) and echocardiography. Myocardial metabolism at pre-therapy PET was evaluated according to both standardized uptake value (SUV)- and score-based approaches. The capability of the score-based image assessment to predict the occurrence of cardiac toxicity with respect to SUV measurement was then evaluated. Results: In contrast to the SUV-based approach, the five-point scale method does not linearly stratify the risk of the subsequent development of cardiotoxicity. However, converting the five-points scale to a dichotomic evaluation (low vs. high myocardial metabolism), FDG-PET/CT showed high diagnostic accuracy in the prediction of cardiac toxicity (specificity = 100% and sensitivity = 83.3%). In patients showing high myocardial uptake at baseline, in which the score-based method is not able to definitively exclude the occurrence of cardiac toxicity, myocardial SUV mean quantification is able to further stratify the risk between low and intermediate risk classes. Conclusions: the score-based approach to FDG-PET/CT images is a feasible method for predicting DXR-induced cardiotoxicity. This method might improve the inter-reader and inter-scanner variability, thus allowing the evaluation of FDG-PET/CT images in a multicentral setting.

Collaboration


Dive into the Francesco Fiz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paolo Bruzzi

National Cancer Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge