Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesco Galimi is active.

Publication


Featured researches published by Francesco Galimi.


Cancer Discovery | 2011

A Molecularly Annotated Platform of Patient-Derived Xenografts (“Xenopatients”) Identifies HER2 as an Effective Therapeutic Target in Cetuximab-Resistant Colorectal Cancer

Andrea Bertotti; Giorgia Migliardi; Francesco Galimi; Francesco Sassi; Davide Torti; Claudio Isella; Davide Corà; Federica Di Nicolantonio; Michela Buscarino; Consalvo Petti; Dario Ribero; Nadia Russolillo; Andrea Muratore; Paolo Massucco; Alberto Pisacane; Luca Molinaro; Emanuele Valtorta; Andrea Sartore-Bianchi; Mauro Risio; Lorenzo Capussotti; Marcello Gambacorta; Salvatore Siena; Enzo Medico; Anna Sapino; Silvia Marsoni; Paolo M. Comoglio; Alberto Bardelli; Livio Trusolino

UNLABELLEDnOnly a fraction of patients with metastatic colorectal cancer receive clinical benefit from therapy with anti-epidermal growth factor receptor (EGFR) antibodies, which calls for the identification of novel biomarkers for better personalized medicine. We produced large xenograft cohorts from 85 patient-derived, genetically characterized metastatic colorectal cancer samples (xenopatients) to discover novel determinants of therapeutic response and new oncoprotein targets. Serially passaged tumors retained the morphologic and genomic features of their original counterparts. A validation trial confirmed the robustness of this approach: xenopatients responded to the anti-EGFR antibody cetuximab with rates and extents analogous to those observed in the clinic and could be prospectively stratified as responders or nonresponders on the basis of several predictive biomarkers. Genotype-response correlations indicated HER2 amplification specifically in a subset of cetuximab-resistant, KRAS/NRAS/BRAF/PIK3CA wild-type cases. Importantly, HER2 amplification was also enriched in clinically nonresponsive KRAS wild-type patients. A proof-of-concept, multiarm study in HER2-amplified xenopatients revealed that the combined inhibition of HER2 and EGFR induced overt, long-lasting tumor regression. Our results suggest promising therapeutic opportunities in cetuximab-resistant patients with metastatic colorectal cancer, whose medical treatment in the chemorefractory setting remains an unmet clinical need.nnnSIGNIFICANCEnDirect transfer xenografts of tumor surgical specimens conserve the interindividual diversity and the genetic heterogeneity typical of the tumors of origin, combining the flexibility of preclinical analysis with the informative value of population-based studies. Our suite of patient-derived xenografts from metastatic colorectal carcinomas reliably mimicked disease response in humans, prospectively recapitulated biomarker-based case stratification, and identified HER2 as a predictor of resistance to anti-epidermal growth factor receptor antibodies and of response to combination therapies against HER2 and epidermal growth factor receptor in this tumor setting.


Cancer Discovery | 2013

Amplification of the MET Receptor Drives Resistance to Anti-EGFR Therapies in Colorectal Cancer

Alberto Bardelli; Simona Corso; Andrea Bertotti; Sebastijan Hobor; Emanuele Valtorta; Giulia Siravegna; Andrea Sartore-Bianchi; Elisa Scala; Andrea Cassingena; Davide Zecchin; Maria Apicella; Giorgia Migliardi; Francesco Galimi; Calogero Lauricella; Carlo Zanon; Timothy Pietro Suren Perera; Silvio Veronese; Giorgio Corti; Alessio Amatu; Marcello Gambacorta; Luis A. Diaz; Mark Sausen; Victor E. Velculescu; Paolo M. Comoglio; Livio Trusolino; Federica Di Nicolantonio; Silvia Giordano; Salvatore Siena

EGF receptor (EGFR)-targeted monoclonal antibodies are effective in a subset of metastatic colorectal cancers. Inevitably, all patients develop resistance, which occurs through emergence of KRAS mutations in approximately 50% of the cases. We show that amplification of the MET proto-oncogene is associated with acquired resistance in tumors that do not develop KRAS mutations during anti-EGFR therapy. Amplification of the MET locus was present in circulating tumor DNA before relapse was clinically evident. Functional studies show that MET activation confers resistance to anti-EGFR therapy both in vitro and in vivo. Notably, in patient-derived colorectal cancer xenografts, MET amplification correlated with resistance to EGFR blockade, which could be overcome by MET kinase inhibitors. These results highlight the role of MET in mediating primary and secondary resistance to anti-EGFR therapies in colorectal cancer and encourage the use of MET inhibitors in patients displaying resistance as a result of MET amplification.


Cell Reports | 2014

Intrinsic Resistance to MEK Inhibition in KRAS Mutant Lung and Colon Cancer through Transcriptional Induction of ERBB3

Chong Sun; Sebastijan Hobor; Andrea Bertotti; Davide Zecchin; Sidong Huang; Francesco Galimi; Francesca Cottino; Anirudh Prahallad; Wipawadee Grernrum; Anna Tzani; Andreas Schlicker; Lodewyk F. A. Wessels; Egbert F. Smit; Pasi Halonen; Cor Lieftink; Roderick L. Beijersbergen; Federica Di Nicolantonio; Alberto Bardelli; Livio Trusolino; René Bernards

There are no effective therapies for the ~30% of human malignancies with mutant RAS oncogenes. Using a kinome-centered synthetic lethality screen, we find that suppression of the ERBB3 receptor tyrosine kinase sensitizes KRAS mutant lung and colon cancer cells to MEK inhibitors. We show that MEK inhibition results in MYC-dependent transcriptional upregulation of ERBB3, which is responsible for intrinsic drug resistance. Drugs targeting both EGFR and ERBB2, each capable of forming heterodimers with ERBB3, can reverse unresponsiveness to MEK inhibition by decreasing inhibitory phosphorylation of the proapoptotic proteins BAD and BIM. Moreover, ERBB3 protein level is a biomarker of response to combinatorial treatment. These data suggest a combination strategy for treating KRAS mutant colon and lung cancers and a way to identify the tumors that are most likely to benefit from such combinatorial treatment.


Clinical Cancer Research | 2012

Inhibition of MEK and PI3K/mTOR Suppresses Tumor Growth but Does Not Cause Tumor Regression in Patient-Derived Xenografts of RAS-Mutant Colorectal Carcinomas

Giorgia Migliardi; Francesco Sassi; Davide Torti; Francesco Galimi; Eugenia Rosalinda Zanella; Michela Buscarino; Dario Ribero; Andrea Muratore; Paolo Massucco; Alberto Pisacane; Mauro Risio; Lorenzo Capussotti; Silvia Marsoni; Federica Di Nicolantonio; Alberto Bardelli; Paolo M. Comoglio; Livio Trusolino; Andrea Bertotti

Purpose: Gene mutations along the Ras pathway (KRAS, NRAS, BRAF, PIK3CA) occur in approximately 50% of colorectal cancers (CRC) and correlate with poor response to anti–EGF receptor (EGFR) therapies. We assessed the effects of mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase (MEK) and phosphoinositide 3-kinase (PI3K)/mTOR inhibitors, which neutralize the major Ras effectors, in patient-derived xenografts from RAS/RAF/PIK3CA-mutant metastatic CRCs (mCRC). Experimental Design: Forty mCRC specimens harboring KRAS, NRAS, BRAF, and/or PIK3CA mutations were implanted in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. Each xenograft was expanded into four treatment arms: placebo, the MEK inhibitor AZD6244, the PI3K/mTOR inhibitor, BEZ235, or AZD6244 + BEZ235. Cases initially treated with placebo crossed over to AZD6244, BEZ235, and the anti-EGFR monoclonal antibody cetuximab. Results: At the 3-week evaluation time point, cotreatment of established tumors with AZD6244 + BEZ235 induced disease stabilization in the majority of cases (70%) but did not lead to overt tumor regression. Monotherapy was less effective, with BEZ235 displaying higher activity than AZD6244 (disease control rates, DCRs: AZD6244, 27.5%; BEZ235, 42.5%). Triple therapy with cetuximab provided further advantage (DCR, 88%). The extent of disease control declined at the 6-week evaluation time point (DCRs: AZD6244, 13.9%; BEZ235, 16.2%; AZD6244 + BEZ235, 34%). Cross-analysis of mice harboring xenografts from the same original tumor and treated with each of the different modalities revealed subgroups with preferential sensitivity to AZD6244 (12.5%), BEZ235 (35%), or AZD6244 + BEZ235 (42.5%); another subgroup (10%) showed equivalent response to any treatment. Conclusions: The prevalent growth-suppressive effects produced by MEK and PI3K/mTOR inhibition suggest that this strategy may retard disease progression in patients. However, data offer cautionary evidence against the occurrence of durable responses. Clin Cancer Res; 18(9); 2515–25. ©2012 AACR.


Science Signaling | 2009

Only a subset of Met-activated pathways are required to sustain oncogene addiction.

Andrea Bertotti; Mike F. Burbridge; Stefania Gastaldi; Francesco Galimi; Davide Torti; Enzo Medico; Silvia Giordano; Simona Corso; Gaëlle Rolland-Valognes; Brian P. Lockhart; John A. Hickman; Paolo M. Comoglio; Livio Trusolino

Cells addicted to different oncogenic receptor tyrosine kinases develop common downstream mechanisms to sustain malignancy. Addicted to Only a Few Sometimes cancer cells become dependent on a particular aberrantly activated protein, encoded by an oncogene. Thus, inhibiting the activity of such an oncogenic protein is one approach to treating cancer. Bertotti et al. found that inhibition of the oncogenic protein Met, which caused “addicted” cells to stop proliferating, only inactivated a subset of the pathways downstream of Met. They identified a signaling and transcriptional response “signature,” involving Ras and phosphoinositide 3-kinase pathways, that contributed to cell-cycle arrest in response to Met inhibition in the Met-addicted cancer cells. A similar biochemical and transcriptional signature was found in response to inhibition of another oncogenic receptor tyrosine kinase, the epidermal growth factor receptor, in cells addicted to this second oncogene. Thus, cells addicted to oncogenic receptor tyrosine kinases may develop common mechanisms to sustain malignancy and therefore be susceptible to similar therapeutic interventions. Tumor onset and progression require the accumulation of many genetic and epigenetic lesions. In some cases, however, cancer cells rely on only one of these lesions to maintain their malignant properties, and this dependence results in tumor regression upon oncogene inactivation (“oncogene addiction”). Determining which nodes of the many networks operative in the transformed phenotype specifically mediate this response to oncogene neutralization is crucial to identifying the vulnerabilities of cancer. Using the Met receptor as the major model system, we combined multiplex phosphoproteomics, genome-wide expression profiling, and functional assays in various cancer cells addicted to oncogenic receptor tyrosine kinases. We found that Met blockade affected a limited subset of Met downstream signals: Little or no effect was observed for several pathways downstream of Met; instead, only a restricted and pathway-specific signature of transducers and transcriptional effectors downstream of Ras or phosphoinositide 3-kinase (PI3K) was inactivated. An analogous signature was also generated by inhibition of epidermal growth factor receptor in a different cellular context, suggesting a stereotyped response that likely is independent of receptor type or tissue origin. Biologically, Met inhibition led to cell-cycle arrest. Inhibition of Ras-dependent signals and PI3K-dependent signals also resulted in cell-cycle arrest, whereas cells in which Met was inhibited proliferated when Ras or PI3K signaling was active. These findings uncover “dominant” and “recessive” nodes among the numerous oncogenic networks regulated by receptor tyrosine kinases and active in cancer, with the Ras and PI3K pathways as determinants of therapeutic response.


Clinical Cancer Research | 2011

Genetic and Expression Analysis of MET, MACC1, and HGF in Metastatic Colorectal Cancer: Response to Met Inhibition in Patient Xenografts and Pathologic Correlations

Francesco Galimi; Davide Torti; Francesco Sassi; Claudio Isella; Davide Corà; Stefania Gastaldi; Dario Ribero; Andrea Muratore; Paolo Massucco; Dimitrios Siatis; Gianluca Paraluppi; Federica Gonella; Francesca Maione; Alberto Pisacane; Ezio David; Bruno Torchio; Mauro Risio; Mauro Salizzoni; Lorenzo Capussotti; Timothy Perera; Enzo Medico; Maria Flavia Di Renzo; Paolo M. Comoglio; Livio Trusolino; Andrea Bertotti

Purpose: We determined the gene copy numbers for MET, for its transcriptional activator MACC1 and for its ligand hepatocyte growth factor (HGF) in liver metastases from colorectal carcinoma (mCRC). We correlated copy numbers with mRNA levels and explored whether gain and/or overexpression of MET and MACC1 predict response to anti-Met therapies. Finally, we assessed whether their genomic or transcriptional deregulation correlates with pathologic and molecular parameters of aggressive disease. Experimental Design: One hundred three mCRCs were analyzed. Copy numbers and mRNA were determined by quantitative PCR (qPCR). Thirty nine samples were implanted and expanded in NOD (nonobese diabetic)/SCID (severe combined immunodeficient) mice to generate cohorts that were treated with the Met inhibitor JNJ-38877605. In silico analysis of MACC1 targets relied on genome-wide mapping of promoter regions and on expression data from two CRC datasets. Results: No focal, high-grade amplifications of MET, MACC1, or HGF were detected. Chromosome 7 polysomy and gain of the p-arm were observed in 21% and 8% of cases, respectively, and significantly correlated with higher expression of both Met and MACC1. Met inhibition in patient-derived xenografts did not modify tumor growth. Copy number gain and overexpression of MACC1 correlated with unfavorable pathologic features better than overexpression of Met. Bioinformatic analysis of putative MACC1 targets identified elements besides Met, whose overexpression cosegregated with aggressive forms of colorectal cancer. Conclusions: Experiments in patient-derived xenografts suggest that mCRCs do not rely on Met genomic gain and/or overexpression for growth. On the basis of pathologic correlations and bioinformatic analysis, MACC1 could contribute to CRC progression through mechanisms other than or additional to Met transcriptional upregulation. Clin Cancer Res; 17(10); 3146–56. ©2011 AACR.


Cancer Discovery | 2015

HER2 Activating Mutations Are Targets for Colorectal Cancer Treatment

Shyam M. Kavuri; Naveen Jain; Francesco Galimi; Francesca Cottino; Simonetta Maria Leto; Giorgia Migliardi; Adam C. Searleman; Wei Shen; John Monsey; Livio Trusolino; Samuel A. Jacobs; Andrea Bertotti; Ron Bose

UNLABELLEDnThe Cancer Genome Atlas project identified HER2 somatic mutations and gene amplification in 7% of patients with colorectal cancer. Introduction of the HER2 mutations S310F, L755S, V777L, V842I, and L866M into colon epithelial cells increased signaling pathways and anchorage-independent cell growth, indicating that they are activating mutations. Introduction of these HER2 activating mutations into colorectal cancer cell lines produced resistance to cetuximab and panitumumab by sustaining MAPK phosphorylation. HER2 mutants are potently inhibited by low nanomolar doses of the irreversible tyrosine kinase inhibitors neratinib and afatinib. HER2 gene sequencing of 48 cetuximab-resistant, quadruple (KRAS, NRAS, BRAF, and PIK3CA) wild-type (WT) colorectal cancer patient-derived xenografts (PDX) identified 4 PDXs with HER2 mutations. HER2-targeted therapies were tested on two PDXs. Treatment with a single HER2-targeted drug (trastuzumab, neratinib, or lapatinib) delayed tumor growth, but dual HER2-targeted therapy with trastuzumab plus tyrosine kinase inhibitors produced regression of these HER2-mutated PDXs.nnnSIGNIFICANCEnHER2 activating mutations cause EGFR antibody resistance in colorectal cell lines, and PDXs with HER2 mutations show durable tumor regression when treated with dual HER2-targeted therapy. These data provide a strong preclinical rationale for clinical trials targeting HER2 activating mutations in metastatic colorectal cancer.


Oncogene | 2013

Met signaling regulates growth, repopulating potential and basal cell-fate commitment of mammary luminal progenitors: implications for basal-like breast cancer

Stefania Gastaldi; Francesco Sassi; Paolo Accornero; Davide Torti; Francesco Galimi; Giorgia Migliardi; Gemma Molyneux; Timothy Pietro Suren Perera; Paolo M. Comoglio; Carla Boccaccio; Matthew John Smalley; Andrea Bertotti; Livio Trusolino

Basal-like breast cancer is an aggressive subtype of mammary carcinoma. Despite expressing basal markers, typical of mammary stem cells, this tumor has been proposed to originate from luminal progenitors, which are downstream of stem cells along the mammary epithelial hierarchy. This suggests that committed luminal progenitors may reacquire basal, stem-like characteristics, but the mechanisms that regulate this transition remain unclear. Using mouse models, we found that luminal progenitors express high levels of the Met receptor for hepatocyte growth factor (HGF), as compared with the other mammary epithelial sub-populations. Constitutive activation of Met led luminal progenitors to attain stem cell properties, including enhanced clonogenic activity in vitro and de novo ability to reconstitute mammary glands in repopulation assays in vivo. Moreover, in response to Met signaling, luminal progenitors gave rise to hyperplastic ductal morphogenesis and preferentially underwent basal lineage commitment at the expense of luminal cell-fate specification. Opposite and symmetric results were produced by systemic pharmacological inhibition of Met. Hence, Met signaling targets luminal progenitors for expansion, impairs their differentiation toward the mature luminal phenotype and enables their commitment toward the basal lineage. These results emphasize a critical role for Met in promoting deregulated proliferation and basal plasticity of normal luminal progenitors in the mammary gland, a complex of events that may be required for sustaining the functional and phenotypic properties of basal-like breast tumors.


Science Translational Medicine | 2015

IGF2 is an actionable target that identifies a distinct subpopulation of colorectal cancer patients with marginal response to anti-EGFR therapies

Eugenia Rosalinda Zanella; Francesco Galimi; Francesco Sassi; Giorgia Migliardi; Francesca Cottino; Simonetta Maria Leto; Barbara Lupo; Jessica Erriquez; Claudio Isella; Paolo M. Comoglio; Enzo Medico; Sabine Tejpar; Eva Budinská; Livio Trusolino; Andrea Bertotti

Colorectal cancers that display reduced sensitivity to EGFR inhibition and strong IGF2 overexpression can be effectively treated by dual EGFR/IGF2 blockade. Better together Inhibitors of the epidermal growth factor receptor (EGFR) are already used to treat colorectal cancer. Unfortunately, although many patients’ tumors respond to these drugs, most of these responses are only partial and result in a slowing of tumor growth rather than a regression of the cancer. Now, Zanella et al. used a combination of patient samples and mouse xenografts to determine the reasons for the incomplete response to treatment and how it can be overcome. In some cases, more effective treatment just required a more complete inhibition of EGFR. Many of the other cancers overexpressed insulin-like growth factor 2 (IGF2), and the authors discovered that combining inhibitors of EGFR and IGF was an effective way to overcome resistance in these tumors. Among patients with colorectal cancer who benefit from therapy targeted to the epidermal growth factor receptor (EGFR), stable disease (SD) occurs more frequently than massive regressions. Exploring the mechanisms of this incomplete sensitivity to devise more efficacious treatments will likely improve patients’ outcomes. We tested therapies tailored around hypothesis-generating molecular features in patient-derived xenografts (“xenopatients”), which originated from 125 independent samples that did not harbor established resistance-conferring mutations. Samples from xenopatients that responded to cetuximab, an anti-EGFR agent, with disease stabilization displayed high levels of EGFR family ligands and receptors, indicating high EGFR pathway activity. Five of 21 SD models (23.8%) characterized by particularly high expression of EGFR and EGFR family members regressed after intensified EGFR blockade by cetuximab and a small-molecule inhibitor. In addition, a subset of cases in which enhanced EGFR inhibition was unproductive (6 of 16, 37.5%) exhibited marked overexpression of insulin-like growth factor 2 (IGF2). Enrichment of IGF2 overexpressors among cases with SD was demonstrated in the entire xenopatient collection and was confirmed in patients by mining clinical gene expression data sets. In functional studies, IGF2 overproduction attenuated the efficacy of cetuximab. Conversely, interception of IGF2-dependent signaling in IGF2-overexpressing xenopatients potentiated the effects of cetuximab. The clinical implementation of IGF inhibitors awaits reliable predictors of response, but the results of this study suggest rational combination therapies for colorectal cancer and provide evidence for IGF2 as a biomarker of reduced tumor sensitivity to anti-EGFR therapy and a determinant of response to combined IGF2/EGFR targeting.


Clinical Cancer Research | 2010

Inhibition of Src Impairs the Growth of Met-Addicted Gastric Tumors

Andrea Bertotti; Cecilia Bracco; Flavia Girolami; Davide Torti; Stefania Gastaldi; Francesco Galimi; Enzo Medico; Paul Elvin; Paolo M. Comoglio; Livio Trusolino

Purpose: We examined whether inhibition of Src tyrosine kinase, a downstream effector of the MET oncogene, can hinder the malignant properties of gastric tumors dependent on Met for growth and survival. Experimental Design: Sensitivity to Src inhibition was determined in vitro by measuring clonogenic survival (anchorage-independent growth) and in vivo by establishing xenograft models. Four “Met-addicted” gastric carcinoma cell lines (GTL16, MKN45, HS746T, and SNU5) and three Met-independent gastric carcinoma cell lines (KATO III, AGS, and NCI-N87) were treated with the Src inhibitor saracatinib (AZD0530). In GTL16 and KATO III, Src neutralization was also achieved by dasatinib and RNA interference. The biochemical and transcriptional consequences of Src inhibition were explored using anti-phosphoprotein antibodies and oligonucleotide microarrays. Results: Inhibition of Src in Met-addicted gastric carcinoma cell lines (a) decreased the phosphorylation/activation levels of signaling intermediates involved in cell proliferation and protection from apoptosis and down-modulated the expression of several cell cycle regulators; (b) reduced anchorage-independent growth; (c) enhanced impairment of cell viability produced by Met inhibition; and (d) delayed tumorigenesis in xenotransplantation models. Immunohistochemical analysis of tumor xenograft tissues following systemic treatment with saracatinib showed a reduction of tumor cell proliferation index, increased apoptosis, and diminished phospho-focal adhesion kinase and phospho-paxillin staining. Tumor stroma parameters such as angiogenesis or inflammatory infiltration were unaffected. In clonogenic survival assays, gastric carcinoma cells without addiction to Met were less sensitive than Met-addicted cells to Src inhibition. Conclusions: Src is as a key downstream transducer of Met-driven tumor growth. Targeting Src might provide therapeutic benefit in Met-addicted tumors. Clin Cancer Res; 16(15); 3933–43. ©2010 AACR.

Collaboration


Dive into the Francesco Galimi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Livio Trusolino

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge