Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Livio Trusolino is active.

Publication


Featured researches published by Livio Trusolino.


Nature Reviews Molecular Cell Biology | 2010

MET signalling: principles and functions in development, organ regeneration and cancer

Livio Trusolino; Andrea Bertotti; Paolo M. Comoglio

The MET tyrosine kinase receptor (also known as the HGF receptor) promotes tissue remodelling, which underlies developmental morphogenesis, wound repair, organ homeostasis and cancer metastasis, by integrating growth, survival and migration cues in response to environmental stimuli or cell-autonomous perturbations. The versatility of MET-mediated biological responses is sustained by qualitative and quantitative signal modulation. Qualitative mechanisms include the engagement of dedicated signal transducers and the subcellular compartmentalization of MET signalling pathways, whereas quantitative regulation involves MET partnering with adaptor amplifiers or being degraded through the shedding of its extracellular domain or through intracellular ubiquitylation. Controlled activation of MET signalling can be exploited in regenerative medicine, whereas MET inhibition might slow down tumour progression.


Nature Reviews Cancer | 2002

Scatter-factor and semaphorin receptors: cell signalling for invasive growth

Livio Trusolino; Paolo M. Comoglio

Malignant disease occurs when neoplastic cells abandon their primary site of accretion, cross tissue boundaries and penetrate the vasculature to colonize distant sites. This process —metastasis — is the aberrant counterpart of a physiological programme for organ regeneration and maintenance. Scatter factors and semaphorins, together with their receptors, help to orchestrate this programme. What are the differences between physiological and pathological activation of these signalling molecules, and can we exploit them therapeutically to prevent metastasis?


Cell | 2001

A Signaling Adapter Function for α6β4 Integrin in the Control of HGF-Dependent Invasive Growth

Livio Trusolino; Andrea Bertotti; Paolo M. Comoglio

Abstract α6β4 integrin and the Met receptor for HGF have been shown independently to promote invasive growth. We demonstrate here that Met selectively associates with α6β4. In carcinoma cells expressing Met alone, HGF does not exert significant biological effects. Ectopic expression of α6β4 restores HGF-regulated processes. Following Met activation, α6β4 is tyrosine phosphorylated and combines with Shc and PI3K, generating an additional signaling platform that potentiates HGF-triggered activation of Ras- and PI3K-dependent pathways. In the presence of an α6β4 mutant defective for Shc recruitment, Met cannot sustain HGF-mediated responses. Surprisingly, a truncated β4 unable to bind laminins retains the activity of wild-type α6β4. Such findings invoke an unexpected role for α6β4 in cancer invasion as a functional amplifier of biochemical outputs rather than a mechanical adhesive device.


Cancer Discovery | 2014

Patient-Derived Xenograft Models: An Emerging Platform for Translational Cancer Research

Manuel Hidalgo; Frédéric Amant; Andrew V. Biankin; Eva Budinská; Annette T. Byrne; Carlos Caldas; Robert B. Clarke; Steven de Jong; Jos Jonkers; Gunhild M. Mælandsmo; Sergio Roman-Roman; Joan Seoane; Livio Trusolino; Alberto Villanueva

UNLABELLED Recently, there has been an increasing interest in the development and characterization of patient-derived tumor xenograft (PDX) models for cancer research. PDX models mostly retain the principal histologic and genetic characteristics of their donor tumor and remain stable across passages. These models have been shown to be predictive of clinical outcomes and are being used for preclinical drug evaluation, biomarker identification, biologic studies, and personalized medicine strategies. This article summarizes the current state of the art in this field, including methodologic issues, available collections, practical applications, challenges and shortcomings, and future directions, and introduces a European consortium of PDX models. SIGNIFICANCE PDX models are increasingly used in translational cancer research. These models are useful for drug screening, biomarker development, and the preclinical evaluation of personalized medicine strategies. This review provides a timely overview of the key characteristics of PDX models and a detailed discussion of future directions in the field.


Cancer Discovery | 2013

Amplification of the MET Receptor Drives Resistance to Anti-EGFR Therapies in Colorectal Cancer

Alberto Bardelli; Simona Corso; Andrea Bertotti; Sebastijan Hobor; Emanuele Valtorta; Giulia Siravegna; Andrea Sartore-Bianchi; Elisa Scala; Andrea Cassingena; Davide Zecchin; Maria Apicella; Giorgia Migliardi; Francesco Galimi; Calogero Lauricella; Carlo Zanon; Timothy Pietro Suren Perera; Silvio Veronese; Giorgio Corti; Alessio Amatu; Marcello Gambacorta; Luis A. Diaz; Mark Sausen; Victor E. Velculescu; Paolo M. Comoglio; Livio Trusolino; Federica Di Nicolantonio; Silvia Giordano; Salvatore Siena

EGF receptor (EGFR)-targeted monoclonal antibodies are effective in a subset of metastatic colorectal cancers. Inevitably, all patients develop resistance, which occurs through emergence of KRAS mutations in approximately 50% of the cases. We show that amplification of the MET proto-oncogene is associated with acquired resistance in tumors that do not develop KRAS mutations during anti-EGFR therapy. Amplification of the MET locus was present in circulating tumor DNA before relapse was clinically evident. Functional studies show that MET activation confers resistance to anti-EGFR therapy both in vitro and in vivo. Notably, in patient-derived colorectal cancer xenografts, MET amplification correlated with resistance to EGFR blockade, which could be overcome by MET kinase inhibitors. These results highlight the role of MET in mediating primary and secondary resistance to anti-EGFR therapies in colorectal cancer and encourage the use of MET inhibitors in patients displaying resistance as a result of MET amplification.


Journal of Clinical Investigation | 1996

HYPERTENSION-ASSOCIATED POINT MUTATIONS IN THE ADDUCIN ALPHA AND BETA SUBUNITS AFFECT ACTIN CYTOSKELETON AND ION TRANSPORT

Grazia Tripodi; Flavia Valtorta; Lucia Torielli; Evelina Chieregatti; Sergio Salardi; Livio Trusolino; Andrea Menegon; Patrizia Ferrari; Pier-Carlo Marchisio; Giuseppe Bianchi

The adducin heterodimer is a protein affecting the assembly of the actin-based cytoskeleton. Point mutations in rat adducin alpha (F316Y) and beta (Q529R) subunits are involved in a form of rat primary hypertension (MHS) associated with faster kidney tubular ion transport. A role for adducin in human primary hypertension has also been suggested. By studying the interaction of actin with purified normal and mutated adducin in a cell-free system and the actin assembly in rat kidney epithelial cells (NRK-52E) transfected with mutated rat adducin cDNA, we show that the adducin isoforms differentially modulate: (a) actin assembly both in a cell-free system and within transfected cells; (b) topography of alpha V integrin together with focal contact proteins; and (c) Na-K pump activity at V(max) (faster with the mutated isoforms, 1281 +/- 90 vs 841 +/- 30 nmol K/h.mg pt., P < 0.0001). This co-modulation suggests a role for adducin in the constitutive capacity of the epithelia both to transport ions and to expose adhesion molecules. These findings may also lead to the understanding of the relation between adducin polymorphism and blood pressure and to the development of new approaches to the study of hypertension-associated organ damage.


Cancer and Metastasis Reviews | 2008

The Met tyrosine kinase receptor in development and cancer

Alessandra Gentile; Livio Trusolino; Paolo M. Comoglio

Met is a tyrosine kinase receptor, encoded by an oncogene, whose crucial role has been elucidated during the last two decades. The complex biological program triggered by Met has been dissected and its biological relevance in both physiology and pathology has been proven. Met supports a morphogenetic program, known as invasive growth, taking place both during embryogenesis and adulthood. In tumors Met is often aberrantly activated, giving rise to the pathological counterpart of the invasive growth program: cancer progression towards metastasis. Several approaches have been recently developed to interfere with the tumorigenic and metastatic processes triggered by Met.


Current Opinion in Cell Biology | 2003

Interactions between growth factor receptors and adhesion molecules: breaking the rules

Paolo M. Comoglio; Carla Boccaccio; Livio Trusolino

Adhesion molecules, although catalytically inactive, are able to translate environmental cues into complex intracellular signals. They can do this by associating with tyrosine kinase receptors for growth factors, which can prime, integrate or feedback adhesion-based signals. Recent results show that reciprocal crosstalk between the two systems is only one facet of such a collaboration, and that unconventional and alternative hierarchies can be established in which, on the one hand, cell adhesion can trigger ligand-independent activation of growth factor receptors, and, on the other, growth factors can induce adhesion molecules to propagate adhesion-independent signals.


Nature Genetics | 2015

Stromal contribution to the colorectal cancer transcriptome

Claudio Isella; Andrea Terrasi; Sara Erika Bellomo; Consalvo Petti; Giovanni Galatola; Andrea Muratore; Alfredo Mellano; Rebecca Senetta; Adele Cassenti; Cristina Sonetto; Giorgio Inghirami; Livio Trusolino; Zsolt Fekete; Mark De Ridder; Paola Cassoni; Guy Storme; Andrea Bertotti; Enzo Medico

Recent studies identified a poor-prognosis stem/serrated/mesenchymal (SSM) transcriptional subtype of colorectal cancer (CRC). We noted that genes upregulated in this subtype are also prominently expressed by stromal cells, suggesting that SSM transcripts could derive from stromal rather than epithelial cancer cells. To test this hypothesis, we analyzed CRC expression data from patient-derived xenografts, where mouse stroma supports human cancer cells. Species-specific expression analysis showed that the mRNA levels of SSM genes were mostly due to stromal expression. Transcriptional signatures built to specifically report the abundance of cancer-associated fibroblasts (CAFs), leukocytes or endothelial cells all had significantly higher expression in human CRC samples of the SSM subtype. High expression of the CAF signature was associated with poor prognosis in untreated CRC, and joint high expression of the stromal signatures predicted resistance to radiotherapy in rectal cancer. These data show that the distinctive transcriptional and clinical features of the SSM subtype can be ascribed to its particularly abundant stromal component.


Journal of Clinical Investigation | 2002

Invasive growth: from development to metastasis.

Paolo M. Comoglio; Livio Trusolino

Invasive growth is a complex morphogenetic program in which proliferative responses are integrated by apparently independent events such as migration, survival, matrix degradation, and induction of cell polarity. In the first step of this sequence (Figure ​(Figure1),1), a cell within a colony or solid tissue is instructed to disrupt cadherin-based intercellular junctions and acquire a fibroblastoid, motile phenotype, initiating detachment from the primary site of accretion. This dramatic reshaping is accompanied by cytoskeletal rearrangements and enhanced production of matrix proteases, which digest basal lamina components and facilitate cell movement through the surrounding environment. During this phase, invading cells must induce a constant and dynamic remodeling of integrin-mediated adhesive contacts with the ECM, which provides a mechanical support for cell migration and prevents the induction of apoptosis. Cell depolarization and invasion are followed by stimulation of cell growth, which allows new regions of the extracellular environment to become populated with cells, setting the stage for the restoration of normal tissue complexity. Ultimately, these cells stop dividing, repolarize, and start terminal differentiation, arranging themselves into three-dimensional structures that are usually organized as branching tubules (1). Figure 1 The invasive growth program under physiological and pathological conditions. In both settings, invasive growth results from analogous biological processes - cell-cell dissociation and migration, cell multiplication, and survival - but the endpoints are ...

Collaboration


Dive into the Livio Trusolino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silvia Marsoni

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge