Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesco Girolamo is active.

Publication


Featured researches published by Francesco Girolamo.


Glia | 2003

Severe Alterations of Endothelial and Glial Cells in the Blood-Brain Barrier of Dystrophic mdx Mice

Beatrice Nico; Antonio Frigeri; Grazia Paola Nicchia; Patrizia Corsi; Domenico Ribatti; Fabio Quondamatteo; Rainer Herken; Francesco Girolamo; Andrea Marzullo; Maria Svelto; Luisa Roncali

In this study, we investigated the involvement of the blood‐brain barrier (BBB) in the brain of the dystrophin‐deficient mdx mouse, an experimental model of Duchenne muscular dystrophy (DMD). To this purpose, we used two tight junction markers, the Zonula occludens (ZO‐1) and claudin‐1 proteins, and a glial marker, the aquaporin‐4 (AQP4) protein, whose expression is correlated with BBB differentiation and integrity. Results showed that most of the brain microvessels in mdx mice were lined by altered endothelial cells that showed open tight junctions and were surrounded by swollen glial processes. Moreover, 18% of the perivascular glial endfeet contained electron‐dense cellular debris and were enveloped by degenerating microvessels. Western blot showed a 60% reduction in the ZO‐1 protein content in mdx mice and a similar reduction in AQP4 content compared with the control brain. ZO‐1 immunocytochemistry and claudin‐1 immunofluorescence in mdx mice revealed a diffuse staining of microvessels as compared with the control ones, which displayed a banded staining pattern. ZO‐1 immunogold electron microscopy showed unlabeled tight junctions and the presence of gold particles scattered in the endothelial cytoplasm in the mdx mice, whereas ZO‐1 gold particles were exclusively located at the endothelial tight junctions in the controls. Dual immunofluorescence staining of α‐actin and ZO‐1 revealed colocalization of these proteins. As in ZO‐1 staining, the pattern of immunolabeling with anti–α‐actin antibody was diffuse in the mdx vessels and pointed or banded in the controls. α‐actin immunogold electron microscopy showed gold particles in the cytoplasms of endothelial cells and pericytes in the mdx mice, whereas α‐actin gold particles were revealed on the endothelial tight junctions and the cytoskeletal microfilaments of pericytes in the controls. Perivascular glial processes of the mdx mice appeared faintly stained by anti‐AQP4 antibody, while in the controls a strong AQP4 labeling of glial processes was detected at light and electron microscope level. The vascular permeability of the mdx brain microvessels was investigated by means of the horseradish peroxidase (HRP). After HRP injection, extensive perivascular areas of marker escape were observed in mdx mice, whereas HRP was exclusively intravascularly localized in the controls. Inflammatory cells, CD4‐, CD8‐, CD20‐, and CD68‐positive cells, were not revealed in the perivascular stroma of the mdx brain. These findings indicate that dystrophin deficiency in the mdx brain leads to severe injury of the endothelial and glial cells with disturbance in α‐actin cytoskeleton, ZO‐1, claudin‐1, and AQP4 assembly, as well as BBB breakdown. The BBB alterations suggest that changes in vascular permeability are involved in the pathogenesis of the neurological dysfunction associated with DMD. GLIA 42:235–251, 2003.


Angiogenesis | 2007

An intimate interplay between precocious, migrating pericytes and endothelial cells governs human fetal brain angiogenesis

Daniela Virgintino; Francesco Girolamo; Mariella Errede; Carmen Capobianco; David Robertson; William B. Stallcup; Roberto Perris; Luisa Roncali

In order to better understand the process of angiogenesis in the developing human brain, we have examined the spatial relationship and relative contributions of endothelial cells and pericytes, the two primary cell types involved in vessel growth, together with their relation with the vascular basement membrane. Pericytes were immunolocalized through use of the specific markers nerve/glial antigen 2 (NG2) proteoglycan, endosialin (CD248) and the platelet-derived growth factor receptor β (PDGFR-β), while endothelial cells were identified by the pan-endothelial marker CD31 and the blood brain barrier (BBB)-specific markers claudin-5 and glucose transporter isoform 1 (GLUT-1). The quantitative analysis demonstrates that microvessels of the fetal human telencephalon are characterized by a continuous layer of activated/angiogenic NG2 pericytes, which tightly invest endothelial cells and participate in the earliest stages of vessel growth. Immunolabelling with anti-active matrix metalloproteinase-2 (aMMP-2) and anti-collagen type IV antibodies revealed that aMMP-2 producing endothelial cells and pericytes are both associated with the vascular basement membrane during vessel sprouting. Detailed localization of the two vascular cell types during angiogenesis suggests that growing microvessels of the human telencephalon are formed by a pericyte-driven angiogenic process in which the endothelial cells are preceded and guided by migrating pericytes during organization of the growing vessel wall.


Journal of Histochemistry and Cytochemistry | 2002

Expression of P-Glycoprotein in Human Cerebral Cortex Microvessels

Daniela Virgintino; David Robertson; Mariella Errede; Vincenzo Benagiano; Francesco Girolamo; Eugenio Maiorano; Luisa Roncali; Bertossi M

P-Glycoprotein (P-gp) is an ATP-dependent efflux transporter that extrudes non-polar molecules, including cytotoxic substances and drugs, from the cells. It was initially found in cancer cells and then was shown to be a normal component of complex transport systems working at the blood-brain barrier (BBB). Previous studies have demonstrated that, in the brain, P-gp is localized on the luminal plasmalemma of BBB endothelial cells and that it may interact with the caveolar compartment of these cells. The aim of this study was to identify the site of cellular expression of P-gp in human brain in situ and to morphologically determine whether an association may exist between P-gp and caveolin-1, a structural and functional protein of the caveolar frame. The study was carried out on human cerebral cortex by immunoconfocal microscopy with antibodies to both P-gp and caveolin-1. The results show that P-gp marks the microvessels of the cortex and that the transporter is localized in the luminal endothelial compartment, where it co-localizes with caveolin-1. The demonstration of this co-localization of P-gp with caveolin-1 contributes a morphological backing to biochemical studies on P-gp/caveolin-1 relationships and leads us to suggest that interactions between these molecules may occur at the BBB endothelia.


Health and Quality of Life Outcomes | 2006

Influence of Interferon beta treatment on quality of life in multiple sclerosis patients

Isabella Laura Simone; A. Ceccarelli; Carla Tortorella; A. Bellacosa; Fabio Pellegrini; Immacolata Plasmati; Maria Fara De Caro; Mariangela Lopez; Francesco Girolamo; Paolo Livrea

BackgroundInterferon-beta (IFN-β) shows beneficial effect on the course of multiple sclerosis (MS), nevertheless its route and frequency of administration and side effects might impact negatively the quality of life (QoL) of MS patients. The objective of this study was to evaluate the influence of IFN-β on QoL in MS patients.MethodsSeventy-seven disease modifying treatment (DMT) free and 41 IFN-β treated MS patients were evaluated. QoL, assessed by MSQoL-54, was related to IFN-β treatment and to clinical and demographic parameters at baseline and after two years. Multivariate hierarchical linear model for repeated measurements was used.ResultsTreated patients showed a younger age, a lower disease duration and a higher relapse rate in the two years preceding study entry. At inclusion time treated and untreated patients did not differ in relapse rate, expanded disability status scale (EDSS), fatigue, depression, physical and mental QoL. IFN-β did not influence QoL at inclusion time, but when QoL was evaluated after two years, treatment negatively affected mental QoL. Depression and fatigue negatively influenced physical and mental QoL both at baseline and after two years. EDSS correlated with a poor physical QoL only at baseline.ConclusionIFN-β had a negative impact on QoL over the time in MS patients, influencing mainly mental QoL. The impairment of QoL in MS was strongly associated with increasing fatigue and depression, whereas clinical disability had a minor unfavourable role.


Histochemistry and Cell Biology | 2003

VEGF expression is developmentally regulated during human brain angiogenesis

Daniela Virgintino; Mariella Errede; David Robertson; Francesco Girolamo; Antonio Masciandaro; Mirella Bertossi

Vascular endothelial growth factor (VEGF) is a potent angiogenic factor working as an endothelial cell-specific mitogen and exerting a trophic effect on neurons and glial cells, both these activities being essential during central nervous system vascularisation, development and repair. The vascularisation of human telencephalon takes place by means of an angiogenic mechanism, which starts at the beginning of corticogenesis and actively proceeds up to the last neuronal migration, when the basic scheme of the vascular network has been drawn. Our study focused on VEGF during this critical developmental period with the aim of identifying the cells that express VEGF and of correlating the events of angiogenesis with the main events of cerebral cortex formation. The results show that in fetal human brain VEGF protein is located on multiple cell types, cells proper to the nervous tissue, neuroepithelial cells, neuroblasts and radial glia cells, and non-neuronal cells, endothelial and periendothelial cells. In these cells VEGF expression appears developmentally regulated and is correlated with angiogenesis, which in turn responds to the high metabolic demands of the differentiating neocortex.


Journal of Neuropathology and Experimental Neurology | 2008

Fetal blood-brain barrier P-glycoprotein contributes to brain protection during human development.

Daniela Virgintino; Mariella Errede; Francesco Girolamo; Carmen Capobianco; David Robertson; Antonella Vimercati; Gabriella Serio; Adriana Di Benedetto; Yasuhiro Yonekawa; Karl Frei; Luisa Roncali

During brain development and blood-brain barrier (BBB) differentiation the expression of P-glycoprotein (P-gp) may complement the protective function of the placental barrier against xenobiotic substances. To establish an immunohistochemical procedure for P-gp detection, different anti-P-gp monoclonal antibodies were first tested on a fibrosarcoma cell line and colonic carcinoma tissue. The protocol was then tested on adult human brains as a BBB-P-gp tissue-specific control and for double labeling with anti-P-gp and the astroglia marker glial fibrillary acidic protein (GFAP). The protocol was then used to analyze the expression and localization of P-gp in human fetuses during cerebral cortex formation. At the earliest examined stage, 12 weeks of gestation (wg), P-gp was detectable as diffuse cytoplasmic labeling of the endothelial cells lining the primary cortex microvessels. At 18 wg, a punctate P-gp staining pattern was detected on cortex and subcortical vessels and on their side branches. At 22 wg, P-gp staining was linear and concentrated on endothelial cell membranes. In all examined ages, GFAP-positive radial glial cells and astrocytes did not stain for P-gp, even at their perivascular processes, whereas faint P-gp labeling was seen on vimentin-reactive radial glia at the earliest examined fetal age. At midgestation, P-gp colocalized with caveolin-pY14 on the abluminal endothelial cell membrane. These results demonstrate that P-gp is expressed early during human cerebral cortical microvessel development, and suggest that at midgestation there may be efflux activity that is regulated by interactions with the caveolar endothelial cell compartment.


Journal of Neuropathology and Experimental Neurology | 2012

Blood-Brain Barrier Alterations in the Cerebral Cortex in Experimental Autoimmune Encephalomyelitis

Mariella Errede; Francesco Girolamo; Giovanni Ferrara; Maurizio Strippoli; Sara Morando; Valentina Boldrin; Marco Rizzi; Antonio Uccelli; Roberto Perris; Caterina Bendotti; Mario Salmona; Luisa Roncali; Daniela Virgintino

Abstract The pathophysiology of cerebral cortical lesions in multiple sclerosis (MS) is not understood. We investigated cerebral cortex microvessels during immune-mediated demyelination in the MS model chronic murine experimental autoimmune encephalomyelitis (EAE) by immunolocalization of the endothelial cell tight junction (TJ) integral proteins claudin-5 and occludin, a structural protein of caveolae, caveolin-1, and the blood-brain barrier–specific endothelial transporter, Glut 1. In EAE-affected mice, there were areas of extensivesubpial demyelination and well-demarcated lesions that extended to deeper cortical layers. Activation of microglia and absence of perivascular inflammatory infiltrates were common in these areas. Microvascular endothelial cells showed increased expression of caveolin-1 and a coincident loss of both claudin-5 and occludin normal junctional staining patterns. At a very early disease stage, claudin-5 molecules tended to cluster and form vacuoles that were also Glut 1 positive; the initially preserved occludin pattern became diffusely cytoplasmic at more advanced stages. Possible internalization of claudin-5 on TJ dismantling was suggested by its coexpression with the autophagosomal marker MAP1LC3A. Loss of TJ integrity was confirmed by fluorescein isothiocyanate–dextran experimentsthat showed leakage of the tracer into the perivascular neuropil. These observations indicate that, in the cerebral cortex of EAE-affected mice, there is a microvascular disease that differentially targets claudin-5 and occludin during ongoing demyelination despite only minimal inflammation.


Acta neuropathologica communications | 2014

Angiogenesis in multiple sclerosis and experimental autoimmune encephalomyelitis

Francesco Girolamo; Cristiana Coppola; Domenico Ribatti; Maria Trojano

Angiogenesis, the formation of new vessels, is found in Multiple Sclerosis (MS) demyelinating lesions following Vascular Endothelial Growth Factor (VEGF) release and the production of several other angiogenic molecules. The increased energy demand of inflammatory cuffs and damaged neural cells explains the strong angiogenic response in plaques and surrounding white matter. An angiogenic response has also been documented in an experimental model of MS, experimental allergic encephalomyelitis (EAE), where blood–brain barrier disruption and vascular remodelling appeared in a pre-symptomatic disease phase. In both MS and EAE, VEGF acts as a pro-inflammatory factor in the early phase but its reduced responsivity in the late phase can disrupt neuroregenerative attempts, since VEGF naturally enhances neuron resistance to injury and regulates neural progenitor proliferation, migration, differentiation and oligodendrocyte precursor cell (OPC) survival and migration to demyelinated lesions. Angiogenesis, neurogenesis and oligodendroglia maturation are closely intertwined in the neurovascular niches of the subventricular zone, one of the preferential locations of inflammatory lesions in MS, and in all the other temporary vascular niches where the mutual fostering of angiogenesis and OPC maturation occurs. Angiogenesis, induced either by CNS inflammation or by hypoxic stimuli related to neurovascular uncoupling, appears to be ineffective in chronic MS due to a counterbalancing effect of vasoconstrictive mechanisms determined by the reduced axonal activity, astrocyte dysfunction, microglia secretion of free radical species and mitochondrial abnormalities. Thus, angiogenesis, that supplies several trophic factors, should be promoted in therapeutic neuroregeneration efforts to combat the progressive, degenerative phase of MS.


Hippocampus | 2013

F3/Contactin promotes hippocampal neurogenesis, synaptic plasticity, and memory in adult mice.

Daniela Puzzo; Antonella Bizzoca; Lucia Privitera; Dario Furnari; Salvatore Giunta; Francesco Girolamo; Marco F. Pinto; Gianfranco Gennarini; Agostino Palmeri

F3/contactin, a cell‐adhesion molecule belonging to the immunoglobulin supergene family, is involved in several aspects of neural development including synapse building, maintenance and functioning. Here, we examine F3/contactin function in adult hippocampal neurogenesis, synaptic plasticity, and memory, using as a model TAG/F3 transgenic mice, where F3/contactin overexpression was induced under control of regulatory sequences from the human TAG‐1 (TAX‐1) gene. Transgenic mice aged 5 (M5) and 12 (M12) months exhibited an increase in hippocampal size, which correlated with positive effects on precursor proliferation and NeuN expression, these data suggesting a possible role for F3/contactin in promoting adult hippocampal neurogenesis. On the functional level, TAG/F3 mice exhibited increased CA1 long‐term potentiation and improved spatial and object recognition memory, notably at 12 months of age. Interestingly, these mice showed an increased expression of the phosphorylated transcription factor CREB, which may represent the main molecular correlate of the observed morphological and functional effects. Altogether, these findings indicate for the first time that F3/contactin plays a role in promoting adult hippocampal neurogenesis and that this effect correlates with improved synaptic function and memory.


Journal of Inherited Metabolic Disease | 2013

The CXCL12/CXCR4/CXCR7 ligand-receptor system regulates neuro-glio-vascular interactions and vessel growth during human brain development

Daniela Virgintino; Mariella Errede; Marco Rizzi; Francesco Girolamo; Maurizio Strippoli; Thomas Wälchli; David Robertson; Karl Frei; Luisa Roncali

This study investigates glio-vascular interactions in human fetal brain at midgestation, specifically examining the expression and immunolocalization of the CXCL12/CXCR4/CXCR7 ligand-receptor axis and its possible role in the vascular patterning of the developing brain. At midgestation, the telencephalic vesicles are characterized by well developed radial glia cells (RGCs), the first differentiated astrocytes and a basic vascular network mainly built of radial vessels. RGCs have been recognized to contribute to cerebral cortex neuro-vascular architecture and have also been demonstrated to act as a significant source of neural cells (Rakic, Brain Res 33:471–476, 1971; Malatesta et al, Development 127:5253–5263, 2000). According to our hypothesis CXCL12, a potent migration and differentiation chemokine released by RGCs, may act as a linking factor coordinating neuroblast migration with vessel growth and patterning through the activation of different ligand/receptor axes. The obtained results support this hypothesis showing that together with CXCR4/CXCR7-reactive neuroblasts, which migrate in close association with CXCL12 RGCs, layer-specific subsets of CXCL12 RGCs and astrocytes specifically contact the microvessel wall. Moreover, the CXCL12/CXCR4/CXCR7 system appears to be directly involved in microvessel growth, its members being differentially expressed in angiogenically activated microvessels and vascular sprouts.

Collaboration


Dive into the Francesco Girolamo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge