Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesco Lemmi is active.

Publication


Featured researches published by Francesco Lemmi.


Medical Imaging 1999: Physics of Medical Imaging | 1999

X-ray imaging using lead iodide as a semiconductor detector

Robert A. Street; Jeffrey T. Rahn; Steve E. Ready; Kanai S. Shah; Paul R. Bennett; Yuriy N. Dmitriyev; Ping Mei; Jeng-Ping Lu; Raj B. Apte; Jackson Ho; Koenraad Van Schuylenbergh; Francesco Lemmi; J. B. Boyce; P. Nylen

The x-ray imaging performance is reported using polycrystalline lead iodide as a thick semiconductor detector on an active matrix flat panel array. We have developed a test image sensor with 100 micron pixel size in a 512 X 512 format, using amorphous silicon TFTs for matrix addressing. The new 14 bit electronic system allows radiographic and fluoroscopic x-ray imaging. PbI2 has larger x-ray absorption and higher charge generation efficiency than selenium, and has the potential for higher sensitivity imaging. The films are deposited by vacuum sublimation and have been grown thicker than 100 micrometer. Measurements of the carrier transport and charge collection, together with modeling studies show how the x-ray sensitivity depends on the material properties. Imaging measurements find excellent spatial resolution and confirm models of the x-ray sensitivity. Both radiographic and fluoroscopic imaging are demonstrated. While good overall imaging is obtained, the dark leakage current and image lag need further improvement.


Medical Imaging 2000: Physics of Medical Imaging | 2000

High-resolution direct-detection x-ray imagers

Robert A. Street; Steve E. Ready; Jeffrey T. Rahn; Marcelo Mulato; Kanai S. Shah; Paul R. Bennett; Ping Mei; Jeng-Ping Lu; Raj B. Apte; Jackson Ho; Koenraad Van Schuylenbergh; Francesco Lemmi; J. B. Boyce; P. Nylen; M. Schieber; Haim Hermon

We report on a-Si direct detection x-ray image sensors with polycrystalline PbI2, and more recently with HgI2. The arrays have 100 micron pixel size and, we study those aspects of the detectors that mainly determine the DQE, such as sensitivity, effective fill factor, dark current noise, noise power spectrum, and x-ray absorption. Line spread function data show that in the PbI2 arrays, most of the signal in the gap between pixels is collected, which is important for high,DQE. The leakage current noise agrees with the expected shot noise value with only a small enhancement at high bias voltages. The noise power spectrum under x-ray exposure is reported and compared to the spatial resolution information. The MTF is close to the ideal sinc function, but is reduced by the contribution of K-fluorescence in the PbI2 film for which we provide new experimental evidence. The role of noise power aliasing in the DQE and the effect of slight image spreading are discussed. Initial studies of HgI2 as the photoconductor material show very promising results with high x-ray sensitivity and low leakage current.


Medical Imaging 1999: Physics of Medical Imaging | 1999

High-resolution high fill factor a-Si:H sensor arrays for medical imaging

Jeffrey T. Rahn; Francesco Lemmi; Richard L. Weisfield; Rene A. Lujan; Ping Mei; Jeng-Ping Lu; Jackson Ho; Steve E. Ready; Raj B. Apte; Per S. Nylen; J. B. Boyce; Robert A. Street

We describe new amorphous silicon (a-Si:H) image sensor arrays which are the highest resolution imagers so far reported. The pixel sizes of 64 micrometer (resolution 8 lp/mm) and 75 micrometer (6.7 lp/mm) are made possible using a photodiode technology that enables high sensor fill factor even in very small pixels. This approach allows the a-Si:H imagers to satisfy high resolution requirements of digital mammography. Each array contains 512 X 512 pixels with matrix addressing provided by a-Si:H thin film transistors (TFT). The high fill factor structure contains a continuous a-Si:H photodiode layer grown on top of the TFT array, with contacts to each pixel through a patterned metal/n+ layer. X-ray detection is accomplished by use of a phosphor layer superimposed on the array. The continuous photodiode layer maximizes light absorption from the phosphor and provides high x-ray conversion efficiency. Since the photodiode forms a continuous layer, crosstalk between adjacent pixels due to the lack of isolation is a particular concern, and has been extensively studied. We find that the high fill factor structure can be made such that the lateral charge leakage is minimal in the dark or under moderate illumination, although small amount of charge spreading is observed under conditions of sensor saturation. The measured MTF for optical illumination exceeds 60% at the Nyquist frequency, even for long integration times.


Medical Imaging 2000: Physics of Medical Imaging | 2000

Charge collection and capacitance in continuous-film flat-panel detectors

Marcelo Mulato; Francesco Lemmi; Rachel Lau; Jeng-Ping Lu; Jackson Ho; Steve E. Ready; Jeffrey T. Rahn; Robert A. Street

The performance of the new generation of high fill factor two- dimensional imagers with high spatial resolution and low data line capacitance is described. These arrays have a continuous a-Si:H sensor layer deposited over the whole imager to improve sensitivity. We have studied charge collection and lateral leakage in the gap region in between two neighboring pixels. Experiments demonstrate that a 10 micrometer gap between pixels leads to an effective fill factor of approximately 92% and can be fabricated in a way to reduce the charge leakage between pixels to a very low level. We have also studied the capacitance of the data lines that can lead to increased electronic noise, degrading the imager performance. Experimental determination of the actual capacitance for different insulator materials are compared with numerical simulations, to identify the optimum structure. Based on these results, the new imager generation could be manufactured with a total parasitic capacitance of about 6 fF/pixel. Finally, we report measurements of the high fill factor imager under light and X-ray exposures.


SPIE's International Symposium on Optical Science, Engineering, and Instrumentation | 1999

Achieving high-resolution in flat-panel imagers for digital radiography

Jeffrey T. Rahn; Francesco Lemmi; Jeng-Ping Lu; Ping Mei; Robert A. Street; Steve E. Ready; Jackson Ho; Raj B. Apte; Koenraad Van Schuylenbergh; Rachel Lau; Richard L. Weisfield; Rene A. Lujan; J. B. Boyce

Amorphous silicon (a-Si:H) matrix-addressed imager sensors are the leading new technology for digital medical x-ray imaging. Large-area systems are now commercially available with good resolution and large dynamic range. These systems image x-rays either by detecting light emission from a phosphor screen onto an a-Si:H photodiode, or by collecting ionization charge in a thick x-ray absorbing photoconductor with as selenium, and both approaches have been widely discussed in the literature. While these systems meet the performance needs for general radiographic imaging, further improvements in sensitivity, noise and resolution are needed to fully satisfy the requirements for fluoroscopy and mammography. The approach taken for this paper uses indirect detection, with a phosphor layer for x-ray conversion. The thin a-Si:H photodiode layer for detects the scintillation light. In contrast with the present generation of devices, which have a mesa-isolated sensor at each pixel, these imagers use a continuous sensor covering the entire front surface of the array. The p+ and i layers of a-Si:H are continuous, while the n+ contact has been patterned to isolate adjacent pixels. The continuous photodiode layer maximizes light absorption from the phosphor and provides high x-ray conversion efficiency.


MRS Proceedings | 2001

Two-Dimensional Amorphous Silicon Color Sensor Array

Francesco Lemmi; M. Mulato; Jackson Ho; R. Lau; JengPing Lu; R. A. Street

This paper reports on the first full realization and characterization of a two-dimensional array of amorphous silicon (a-Si:H) color sensors, addressed by integrated amorphous silicon-based thin-film transistors (TFTs). The array includes 512 × 512 pixels with 75-µm pitch, or about 340 dpi. Each pixel features a color sensor realized by a p-i-n-i-p stack of doped and undoped a-Si:H layers, and the TFT. The color sensors are made of two back-to-back p-i-n diodes, which selectively sense the illumination according to the polarity of the applied bias voltage. The sensor layers are grown on top of the TFTs to improve the array fill factor. The p-in-i-p sensor stack is mesa-isolated into single sensors to reduce cross-talk. Images are acquired using two bias voltages and yield the red and blue/green components of the original with a good color separation. A color image is reconstructed using the information from the two images acquired. Aside from a color bias, which is expected for a two-color reconstruction, the imaging system works well. In particular, the array shows very low leakage currents, which enable a very large dynamic range and sensitivity. In the response of the array to a light pulse, the bottom thick diode ensures a fast drop in the signal after the flash, while the top thin diode exhibits some residual image lag.


International Symposium on Optical Science and Technology | 2000

Matrix-addressed x-ray detector arrays

Robert A. Street; Raj B. Apte; J. B. Boyce; Jackson Ho; Rachel Lau; Francesco Lemmi; Jeng-Ping Lu; Marcelo Mulato; Steve E. Ready; Koenraad Van Schuylenbergh

Amorphous silicon (a-Si:H) technology has created a successful manufacturing business for large area active matrix arrays, of which liquid crystal displays (AMLCD) are the best known, and image sensors are an emerging technology for medical x-ray imaging. The large area, flat plate, format is the key feature of the technology that sets it apart from other digital imaging approaches. The principal requirements for medical imaging are sensitivity and high dynamic range. A-Si:H detectors have already proved to perform at least as well as x-ray film for radiographic applications and comparable to image intensifiers for fluoroscopy. There are several approaches to improving the performance of the image sensors is order to achieve higher sensitivity and higher spatial resolution. This paper describes some of these approaches.


Archive | 2003

Method of making photolithographically-patterned out-of-plane coil structures

Christopher L. Chua; Francesco Lemmi; Koenraad Van Schuylenbergh; Jeng Ping Lu; David K. Fork; Eric Peeters; Decai Sun; Donald L. Smith; Linda T. Romano


Archive | 1999

Continuous amorphous silicon layer sensors using doped poly-silicon back contact

Ping Mei; Jeng Ping Lu; Francesco Lemmi; Robert A. Street; J. B. Boyce


Archive | 1999

Continuous amorphous silicon layer sensors using sealed metal back contact

Ping Mei; Jeng Ping Lu; Francesco Lemmi; Robert A. Street; J. B. Boyce

Researchain Logo
Decentralizing Knowledge