Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesco M. Lasorsa is active.

Publication


Featured researches published by Francesco M. Lasorsa.


Proceedings of the National Academy of Sciences of the United States of America | 2014

UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation

Angelo Vozza; Giovanni Parisi; Francesco De Leonardis; Francesco M. Lasorsa; Alessandra Castegna; Daniela Amorese; Raffaele Marmo; Valeria Mariajolanda Calcagnile; Luigi Palmieri; Daniel Ricquier; Eleonora Paradies; Pasquale Scarcia; Ferdinando Palmieri; Frédéric Bouillaud; Giuseppe Fiermonte

Significance Mitochondrial carriers constitute a large family of transport proteins that play important roles in the intracellular translocation of metabolites, nucleotides, and coenzymes. Despite considerable research efforts, the biochemical function of Uncoupling protein 2 (UCP2), a member of the mitochondrial carrier family reported to be involved in numerous pathologies, is still elusive. Here we show that UCP2 catalyzes an exchange of malate, oxaloacetate, and aspartate for phosphate, and that it exports C4 metabolites from mitochondria to the cytosol in vivo. Our findings also provide evidence that UCP2 activity limits mitochondrial oxidation of glucose and enhances glutaminolysis. These results provide a unique regulatory mechanism in cell bioenergetics and explain the significance of UCP2 levels in metabolic reprogramming occurring under various physiopathological conditions. Uncoupling protein 2 (UCP2) is involved in various physiological and pathological processes such as insulin secretion, stem cell differentiation, cancer, and aging. However, its biochemical and physiological function is still under debate. Here we show that UCP2 is a metabolite transporter that regulates substrate oxidation in mitochondria. To shed light on its biochemical role, we first studied the effects of its silencing on the mitochondrial oxidation of glucose and glutamine. Compared with wild-type, UCP2-silenced human hepatocellular carcinoma (HepG2) cells, grown in the presence of glucose, showed a higher inner mitochondrial membrane potential and ATP:ADP ratio associated with a lower lactate release. Opposite results were obtained in the presence of glutamine instead of glucose. UCP2 reconstituted in lipid vesicles catalyzed the exchange of malate, oxaloacetate, and aspartate for phosphate plus a proton from opposite sides of the membrane. The higher levels of citric acid cycle intermediates found in the mitochondria of siUCP2-HepG2 cells compared with those found in wild-type cells in addition to the transport data indicate that, by exporting C4 compounds out of mitochondria, UCP2 limits the oxidation of acetyl-CoA–producing substrates such as glucose and enhances glutaminolysis, preventing the mitochondrial accumulation of C4 metabolites derived from glutamine. Our work reveals a unique regulatory mechanism in cell bioenergetics and provokes a substantial reconsideration of the physiological and pathological functions ascribed to UCP2 based on its purported uncoupling properties.


FEBS Letters | 1997

Identification of the yeast ACR1 gene product as a succinate‐fumarate transporter essential for growth on ethanol or acetate

Luigi Palmieri; Francesco M. Lasorsa; Annalisa De Palma; Ferdinando Palmieri; Michael J. Runswick; John E. Walker

The protein encoded by the ACR1 gene in Saccharomyces cerevisiae belongs to a family of 35 related membrane proteins that are encoded in the fungal genome. Some of them are known to transport various substrates and products across the inner membranes of mitochondria, but the functions of 28 members of the family are unknown. The yeast ACR1 gene was introduced into Escherichia coli on an expression plasmid. The protein was over‐produced as inclusion bodies, which were purified and solubilised in the presence of sarkosyl. The solubilised protein was reconstituted into liposomes and shown to transport fumarate and succinate. Its physiological role in S. cerevisiae is probably to transport cytoplasmic succinate, derived from isocitrate by the action of isocitrate lyase in the cytosol, into the mitochondrial matrix in exchange for fumarate. This exchange activity and the subsequent conversion of fumarate to oxaloacetate in the cytosol would be essential for the growth of S. cerevisiae on ethanol or acetate as the sole carbon source.


Journal of Biological Chemistry | 2003

Recombinant expression of the Ca(2+)-sensitive aspartate/glutamate carrier increases mitochondrial ATP production in agonist-stimulated Chinese hamster ovary cells.

Francesco M. Lasorsa; Paolo Pinton; Luigi Palmieri; Giuseppe Fiermonte; Rosario Rizzuto; Ferdinando Palmieri

The Ca2+-sensitive dehydrogenases of the mitochondrial matrix are, so far, the only known effectors to allow Ca2+ signals to couple the activation of plasma membrane receptors to the stimulation of aerobic metabolism. In this study, we demonstrate a novel mechanism, based on Ca2+-sensitive metabolite carriers of the inner membrane. We expressed in Chinese hamster ovary cells aralar1 and citrin, aspartate/glutamate exchangers that have Ca2+-binding sites in their sequence, and measured mitochondrial Ca2+ and ATP levels as well as cytosolic Ca2+ concentration with targeted recombinant probes. The increase in mitochondrial ATP levels caused by cell stimulation with Ca2+-mobilizing agonists was markedly larger in cells expressing aralar and citrin (but not truncated mutants lacking the Ca2+-binding site) than in control cells. Conversely, the cytosolic and the mitochondrial Ca2+ signals were the same in control cells and cells expressing the different aralar1 and citrin variants, thus ruling out an indirect effect through the Ca2+-sensitive dehydrogenases. Together, these data show that the decoding of Ca2+ signals in mitochondria depends on the coordinate activity of mitochondrial enzymes and carriers, which may thus represent useful pharmacological targets in this process of major pathophysiological interest.


Biochemical Journal | 2004

Identification of the human mitochondrial S-adenosylmethionine transporter: bacterial expression, reconstitution, functional characterization and tissue distribution.

Gennaro Agrimi; M A Di Noia; Carlo M.T. Marobbio; Giuseppe Fiermonte; Francesco M. Lasorsa; Ferdinando Palmieri

The mitochondrial carriers are a family of transport proteins that, with a few exceptions, are found in the inner membranes of mitochondria. They shuttle metabolites and cofactors through this membrane, and connect cytoplasmic functions with others in the matrix. SAM (S-adenosylmethionine) has to be transported into the mitochondria where it is converted into S-adenosylhomocysteine in methylation reactions of DNA, RNA and proteins. The transport of SAM has been investigated in rat liver mitochondria, but no protein has ever been associated with this activity. By using information derived from the phylogenetically distant yeast mitochondrial carrier for SAM and from related human expressed sequence tags, a human cDNA sequence was completed. This sequence was overexpressed in bacteria, and its product was purified, reconstituted into phospholipid vesicles and identified from its transport properties as the human mitochondrial SAM carrier (SAMC). Unlike the yeast orthologue, SAMC catalysed virtually only countertransport, exhibited a higher transport affinity for SAM and was strongly inhibited by tannic acid and Bromocresol Purple. SAMC was found to be expressed in all human tissues examined and was localized to the mitochondria. The physiological role of SAMC is probably to exchange cytosolic SAM for mitochondrial S-adenosylhomocysteine. This is the first report describing the identification and characterization of the human SAMC and its gene.


Biochimica et Biophysica Acta | 2000

Identification and functions of new transporters in yeast mitochondria.

Luigi Palmieri; Francesco M. Lasorsa; Angelo Vozza; Gennaro Agrimi; Giuseppe Fiermonte; Michael J. Runswick; John E. Walker; Ferdinando Palmieri

The genome of Saccharomyces cerevisiae encodes 35 putative members of the mitochondrial carrier family. Known members of this family transport substrates and products across the inner membranes of mitochondria. We are attempting to identify the functions of the yeast mitochondrial transporters via high-yield expression in Escherichia coli and/or S. cerevisiae, purification and reconstitution of their protein products into liposomes, where their transport properties are investigated. With this strategy, we have already identified the functions of seven S. cerevisiae gene products, whose structural and functional properties assigned them to the mitochondrial carrier family. The functional information obtained in the reconstituted system and the use of knock-out yeast strains can be usefully exploited for the investigation of the physiological role of individual transporters. Furthermore, the yeast carrier sequences can be used to identify the orthologous proteins in other organisms, including man.


The New England Journal of Medicine | 2009

AGC1 Deficiency Associated with Global Cerebral Hypomyelination

Rolf Wibom; Francesco M. Lasorsa; Virpi Töhönen; Michela Barbaro; Fredrik H. Sterky; Thomas Kucinski; Karin Naess; Monica Jonsson; Ciro Leonardo Pierri; Ferdinando Palmieri; Anna Wedell

The mitochondrial aspartate-glutamate carrier isoform 1 (AGC1), specific to neurons and muscle, supplies aspartate to the cytosol and, as a component of the malate-aspartate shuttle, enables mitochondrial oxidation of cytosolic NADH, thought to be important in providing energy for neurons in the central nervous system. We describe AGC1 deficiency, a novel syndrome characterized by arrested psychomotor development, hypotonia, and seizures in a child with a homozygous missense mutation in the solute carrier family 25, member 12, gene SLC25A12, which encodes the AGC1 protein. Functional analysis of the mutant AGC1 protein showed abolished activity. The child had global hypomyelination in the cerebral hemispheres, suggesting that impaired efflux of aspartate from neuronal mitochondria prevents normal myelin formation.


The EMBO Journal | 2003

Identification and functional reconstitution of yeast mitochondrial carrier for S-adenosylmethionine

Carlo M.T. Marobbio; Gennaro Agrimi; Francesco M. Lasorsa; Ferdinando Palmieri

The genome of Saccharomyces cerevisiae contains 35 members of the mitochondrial carrier protein family, most of which have not yet been functionally identified. Here the identification of the mitochondrial carrier for S‐adenosylmethionine (SAM) Sam5p is described. The corresponding gene has been overexpressed in bacteria and the protein has been reconstituted into phospholipid vesicles and identified by its transport properties. In confirmation of its identity, (i) the Sam5p–GFP protein was found to be targeted to mitochondria; (ii) the cells lacking the gene for this carrier showed auxotrophy for biotin (which is synthesized in the mitochondria by the SAM‐requiring Bio2p) on fermentable carbon sources and a petite phenotype on non‐fermentable substrates; and (iii) both phenotypes of the knock‐out mutant were overcome by expressing the cytosolic SAM synthetase (Sam1p) inside the mitochondria.


FEBS Letters | 1999

Identification of the mitochondrial carnitine carrier in Saccharomyces cerevisiae

Luigi Palmieri; Francesco M. Lasorsa; Vito Iacobazzi; Michael J. Runswick; Ferdinando Palmieri; John E. Walker

The mitochondrial carrier protein for carnitine has been identified in Saccharomyces cerevisiae. It is encoded by the gene CRC1 and is a member of the family of mitochondrial transport proteins. The protein has been over‐expressed with a C‐terminal His‐tag in S. cerevisiae and isolated from mitochondria by nickel affinity chromatography. The purified protein has been reconstituted into proteoliposomes and its transport characteristics established. It transports carnitine, acetylcarnitine, propionylcarnitine and to a much lower extent medium‐ and long‐chain acylcarnitines.


Journal of Biological Chemistry | 2009

Mitochondrial Glutamate Carrier GC1 as a Newly Identified Player in the Control of Glucose-stimulated Insulin Secretion

Marina Shamini Casimir; Francesco M. Lasorsa; Blanca Rubi; Dorothée Caille; Ferdinando Palmieri; Paolo Meda; Pierre Maechler

The SLC25 carrier family mediates solute transport across the inner mitochondrial membrane, a process that is still poorly characterized regarding both the mechanisms and proteins implicated. This study investigated mitochondrial glutamate carrier GC1 in insulin-secreting β-cells. GC1 was cloned from insulin-secreting cells, and sequence analysis revealed hydropathy profile of a six-transmembrane protein, characteristic of mitochondrial solute carriers. GC1 was found to be expressed at the mRNA and protein levels in INS-1E β-cells and pancreatic rat islets. Immunohistochemistry showed that GC1 was present in mitochondria, and ultrastructural analysis by electron microscopy revealed inner mitochondrial membrane localization of the transporter. Silencing of GC1 in INS-1E β-cells, mediated by adenoviral delivery of short hairpin RNA, reduced mitochondrial glutamate transport by 48% (p < 0.001). Insulin secretion at basal 2.5 mm glucose and stimulated either by intermediate 7.5 mm glucose or non-nutrient 30 mm KCl was not modified by GC1 silencing. Conversely, insulin secretion stimulated with optimal 15 mm glucose was reduced by 23% (p < 0.005) in GC1 knocked down cells compared with controls. Adjunct of cell-permeant glutamate (5 mm dimethyl glutamate) fully restored the secretory response at 15 mm glucose (p < 0.005). Kinetics of insulin secretion were investigated in perifused isolated rat islets. GC1 silencing in islets inhibited the secretory response induced by 16.7 mm glucose, both during first (−25%, p < 0.05) and second (−33%, p < 0.05) phases. This study demonstrates that insulin-secreting cells depend on GC1 for maximal glucose response, thereby assigning a physiological function to this newly identified mitochondrial glutamate carrier.


Biochemical Journal | 2004

The yeast peroxisomal adenine nucleotide transporter: characterization of two transport modes and involvement in ΔpH formation across peroxisomal membranes

Francesco M. Lasorsa; Pasquale Scarcia; Ralf Erdmann; Ferdinando Palmieri; Hanspeter Rottensteiner; Luigi Palmieri

The yeast peroxisomal adenine nucleotide carrier, Ant1p, was shown to catalyse unidirectional transport in addition to exchange of substrates. In both transport modes, proton movement occurs. Nucleotide hetero-exchange is H+-compensated and electroneutral. Furthermore, microscopic fluorescence imaging of a pH-sensitive green fluorescent protein targeted to peroxisomes shows that Ant1p is involved in the formation of a DeltapH across the peroxisomal membrane, acidic inside.

Collaboration


Dive into the Francesco M. Lasorsa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge