Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppe Fiermonte is active.

Publication


Featured researches published by Giuseppe Fiermonte.


Proceedings of the National Academy of Sciences of the United States of America | 2001

The human mitochondrial deoxynucleotide carrier and its role in the toxicity of nucleoside antivirals

Vincenza Dolce; Giuseppe Fiermonte; Michael J. Runswick; Ferdinando Palmieri; John E. Walker

The synthesis of DNA in mitochondria requires the uptake of deoxynucleotides into the matrix of the organelle. We have characterized a human cDNA encoding a member of the family of mitochondrial carriers. The protein has been overexpressed in bacteria and reconstituted into phospholipid vesicles where it catalyzed the transport of all four deoxy (d) NDPs, and, less efficiently, the corresponding dNTPs, in exchange for dNDPs, ADP, or ATP. It did not transport dNMPs, NMPs, deoxynucleosides, nucleosides, purines, or pyrimidines. The physiological role of this deoxynucleotide carrier is probably to supply deoxynucleotides to the mitochondrial matrix for conversion to triphosphates and incorporation into mitochondrial DNA. The protein is expressed in all human tissues that were examined except for placenta, in accord with such a central role. The deoxynucleotide carrier also transports dideoxynucleotides efficiently. It is likely to be medically important by providing the means of uptake into mitochondria of nucleoside analogs, leading to the mitochondrial impairment that underlies the toxic side effects of such drugs in the treatment of viral illnesses, including AIDS, and in cancer therapy.


Proceedings of the National Academy of Sciences of the United States of America | 2014

UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation

Angelo Vozza; Giovanni Parisi; Francesco De Leonardis; Francesco M. Lasorsa; Alessandra Castegna; Daniela Amorese; Raffaele Marmo; Valeria Mariajolanda Calcagnile; Luigi Palmieri; Daniel Ricquier; Eleonora Paradies; Pasquale Scarcia; Ferdinando Palmieri; Frédéric Bouillaud; Giuseppe Fiermonte

Significance Mitochondrial carriers constitute a large family of transport proteins that play important roles in the intracellular translocation of metabolites, nucleotides, and coenzymes. Despite considerable research efforts, the biochemical function of Uncoupling protein 2 (UCP2), a member of the mitochondrial carrier family reported to be involved in numerous pathologies, is still elusive. Here we show that UCP2 catalyzes an exchange of malate, oxaloacetate, and aspartate for phosphate, and that it exports C4 metabolites from mitochondria to the cytosol in vivo. Our findings also provide evidence that UCP2 activity limits mitochondrial oxidation of glucose and enhances glutaminolysis. These results provide a unique regulatory mechanism in cell bioenergetics and explain the significance of UCP2 levels in metabolic reprogramming occurring under various physiopathological conditions. Uncoupling protein 2 (UCP2) is involved in various physiological and pathological processes such as insulin secretion, stem cell differentiation, cancer, and aging. However, its biochemical and physiological function is still under debate. Here we show that UCP2 is a metabolite transporter that regulates substrate oxidation in mitochondria. To shed light on its biochemical role, we first studied the effects of its silencing on the mitochondrial oxidation of glucose and glutamine. Compared with wild-type, UCP2-silenced human hepatocellular carcinoma (HepG2) cells, grown in the presence of glucose, showed a higher inner mitochondrial membrane potential and ATP:ADP ratio associated with a lower lactate release. Opposite results were obtained in the presence of glutamine instead of glucose. UCP2 reconstituted in lipid vesicles catalyzed the exchange of malate, oxaloacetate, and aspartate for phosphate plus a proton from opposite sides of the membrane. The higher levels of citric acid cycle intermediates found in the mitochondria of siUCP2-HepG2 cells compared with those found in wild-type cells in addition to the transport data indicate that, by exporting C4 compounds out of mitochondria, UCP2 limits the oxidation of acetyl-CoA–producing substrates such as glucose and enhances glutaminolysis, preventing the mitochondrial accumulation of C4 metabolites derived from glutamine. Our work reveals a unique regulatory mechanism in cell bioenergetics and provokes a substantial reconsideration of the physiological and pathological functions ascribed to UCP2 based on its purported uncoupling properties.


Nature Cell Biology | 2010

MTCH2/MIMP is a major facilitator of tBID recruitment to mitochondria

Yehudit Zaltsman; Liat Shachnai; Natalie Yivgi-Ohana; Michal Schwarz; Maria Maryanovich; Riekelt H. Houtkooper; Frédéric M. Vaz; Francesco De Leonardis; Giuseppe Fiermonte; Ferdinando Palmieri; Bernhard Gillissen; Peter T. Daniel; Erin Jimenez; Susan Walsh; Carla M. Koehler; Soumya Sinha Roy; Ludivine Walter; Gyoergy Hajnoczky; Atan Gross

The BH3-only BID protein (BH3-interacting domain death agonist) has a critical function in the death-receptor pathway in the liver by triggering mitochondrial outer membrane permeabilization (MOMP). Here we show that MTCH2/MIMP (mitochondrial carrier homologue 2/Met-induced mitochondrial protein), a novel truncated BID (tBID)-interacting protein, is a surface-exposed outer mitochondrial membrane protein that facilitates the recruitment of tBID to mitochondria. Knockout of MTCH2/MIMP in embryonic stem cells and in mouse embryonic fibroblasts hinders the recruitment of tBID to mitochondria, the activation of Bax/Bak, MOMP, and apoptosis. Moreover, conditional knockout of MTCH2/MIMP in the liver decreases the sensitivity of mice to Fas-induced hepatocellular apoptosis and prevents the recruitment of tBID to liver mitochondria both in vivo and in vitro. In contrast, MTCH2/MIMP deletion had no effect on apoptosis induced by other pro-apoptotic Bcl-2 family members and no detectable effect on the outer membrane lipid composition. These loss-of-function models indicate that MTCH2/MIMP has a critical function in liver apoptosis by regulating the recruitment of tBID to mitochondria.


Nature Genetics | 2002

Mutant deoxynucleotide carrier is associated with congenital microcephaly.

Marjorie Rosenberg; Richa Agarwala; Gerard G. Bouffard; Joie Davis; Giuseppe Fiermonte; Mark S. Hilliard; Thorsten Koch; Linda M. Kalikin; Izabela Makalowska; D. Holmes Morton; Elizabeth M. Petty; James L. Weber; Ferdinando Palmieri; Richard I. Kelley; Alejandro A. Schäffer; Leslie G. Biesecker

The disorder Amish microcephaly (MCPHA) is characterized by severe congenital microcephaly, elevated levels of α-ketoglutarate in the urine and premature death. The disorder is inherited in an autosomal recessive pattern and has been observed only in Old Order Amish families whose ancestors lived in Lancaster County, Pennsylvania. Here we show, by using a genealogy database and automated pedigree software, that 23 nuclear families affected with MCPHA are connected to a single ancestral couple. Through a whole-genome scan, fine mapping and haplotype analysis, we localized the gene affected in MCPHA to a region of 3 cM, or 2 Mb, on chromosome 17q25. We constructed a map of contiguous genomic clones spanning this region. One of the genes in this region, SLC25A19, which encodes a nuclear mitochondrial deoxynucleotide carrier (DNC), contains a substitution that segregates with the disease in affected individuals and alters an amino acid that is highly conserved in similar proteins. Functional analysis shows that the mutant DNC protein lacks the normal transport activity, implying that failed deoxynucleotide transport across the inner mitochondrial membrane causes MCPHA. Our data indicate that mitochondrial deoxynucleotide transport may be essential for prenatal brain growth.


Journal of Biological Chemistry | 2003

Recombinant expression of the Ca(2+)-sensitive aspartate/glutamate carrier increases mitochondrial ATP production in agonist-stimulated Chinese hamster ovary cells.

Francesco M. Lasorsa; Paolo Pinton; Luigi Palmieri; Giuseppe Fiermonte; Rosario Rizzuto; Ferdinando Palmieri

The Ca2+-sensitive dehydrogenases of the mitochondrial matrix are, so far, the only known effectors to allow Ca2+ signals to couple the activation of plasma membrane receptors to the stimulation of aerobic metabolism. In this study, we demonstrate a novel mechanism, based on Ca2+-sensitive metabolite carriers of the inner membrane. We expressed in Chinese hamster ovary cells aralar1 and citrin, aspartate/glutamate exchangers that have Ca2+-binding sites in their sequence, and measured mitochondrial Ca2+ and ATP levels as well as cytosolic Ca2+ concentration with targeted recombinant probes. The increase in mitochondrial ATP levels caused by cell stimulation with Ca2+-mobilizing agonists was markedly larger in cells expressing aralar and citrin (but not truncated mutants lacking the Ca2+-binding site) than in control cells. Conversely, the cytosolic and the mitochondrial Ca2+ signals were the same in control cells and cells expressing the different aralar1 and citrin variants, thus ruling out an indirect effect through the Ca2+-sensitive dehydrogenases. Together, these data show that the decoding of Ca2+ signals in mitochondria depends on the coordinate activity of mitochondrial enzymes and carriers, which may thus represent useful pharmacological targets in this process of major pathophysiological interest.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Knockout of Slc25a19 causes mitochondrial thiamine pyrophosphate depletion, embryonic lethality, CNS malformations, and anemia

Marjorie J. Lindhurst; Giuseppe Fiermonte; Shiwei Song; Eduard A. Struys; Francesco De Leonardis; Pamela L. Schwartzberg; Amy Chen; Alessandra Castegna; Nanda M. Verhoeven; Christopher K. Mathews; Ferdinando Palmieri; Leslie G. Biesecker

SLC25A19 mutations cause Amish lethal microcephaly (MCPHA), which markedly retards brain development and leads to α-ketoglutaric aciduria. Previous data suggested that SLC25A19, also called DNC, is a mitochondrial deoxyribonucleotide transporter. We generated a knockout mouse model of Slc25a19. These animals had 100% prenatal lethality by embryonic day 12. Affected embryos at embryonic day 10.5 have a neural-tube closure defect with ruffling of the neural fold ridges, a yolk sac erythropoietic failure, and elevated α-ketoglutarate in the amniotic fluid. We found that these animals have normal mitochondrial ribo- and deoxyribonucleoside triphosphate levels, suggesting that transport of these molecules is not the primary role of SLC25A19. We identified thiamine pyrophosphate (ThPP) transport as a candidate function of SLC25A19 through homology searching and confirmed it by using transport assays of the recombinant reconstituted protein. The mitochondria of Slc25a19−/− and MCPHA cells have undetectable and markedly reduced ThPP content, respectively. The reduction of ThPP levels causes dysfunction of the α-ketoglutarate dehydrogenase complex, which explains the high levels of this organic acid in MCPHA and suggests that mitochondrial ThPP transport is important for CNS development.


Journal of Biological Chemistry | 1998

Expression in Escherichia coli, Functional Characterization, and Tissue Distribution of Isoforms A and B of the Phosphate Carrier from Bovine Mitochondria

Giuseppe Fiermonte; Vincenza Dolce; Ferdinando Palmieri

The two isoforms of the mammalian mitochondrial phosphate carrier (PiC), A and B, differing in the sequence near the N terminus, arise from alternative splicing of a primary transcript of the PiC gene (Dolce, V., Iacobazzi, V., Palmieri, F., and Walker, J. E. (1994) J. Biol. Chem. 269, 10451–10460). To date, the PiC isoforms A and B have not been studied at the protein level. To explore the tissue-distribution and the potential functional differences between the two isoforms, polyclonal site-directed antibodies specific for PiC-A and PiC-B were raised, and the two bovine isoforms were obtained by expression in Escherichia coliand reconstituted into phospholipid vesicles. Western blot analysis demonstrated that isoform A is present in high amounts in heart, skeletal muscle, and diaphragm mitochondria, whereas isoform B is present in the mitochondria of all tissues examined. Heart and liver bovine mitochondria contained 69 and 0 pmol of PiC-A/mg of protein, and 10 and 8 pmol of PiC-B/mg of protein, respectively. In the reconstituted system the pure recombinant isoforms A and B both catalyzed the two known modes of transport (Pi/Pi antiport and Pi/H+ symport) and exhibited similar properties of substrate specificity and inhibitor sensitivity. However, they strongly differed in their kinetic parameters. The transport affinities of isoform B for phosphate and arsenate were found to be 3-fold lower than those of isoform A. Furthermore, the maximum transport rate of isoform B is about 3-fold higher than that of isoform A. These results support the hypothesis that the sequence divergence between PiC-A and PiC-B may have functional significance in determining the affinity and the translocation rate of the substrate through the PiC molecule.


Journal of Bioenergetics and Biomembranes | 2000

Yeast mitochondrial carriers: bacterial expression, biochemical identification and metabolic significance.

Luigi Palmieri; Michael J. Runswick; Giuseppe Fiermonte; John E. Walker; Ferdinando Palmieri

The genome of Saccharomyces cerevisiae encodes 35 members of a family proteins thattransport metabolites and substrates across the inner membranes of mitochondria. They includethree isoforms of the ADP/ATP translocase and the phosphate and citrate carriers. At the startof our work, the functions of the remaining 30 members of the family were unknown. We areattempting to identify these 30 proteins by overexpression of the proteins in specially selectedhost strains of Escherichia coli that allow the carriers to accumulate at high levels in the formof inclusion bodies. The purified proteins are then reconstituted into proteoliposomes wheretheir transport properties are studied. Thus far, we have identified the dicarboxylate,succinate-fumarate and ornithine carriers. Bacterial overexpression and functional identification, togetherwith characterization of yeast knockout strains, has brought insight into the physiologicalsignificance of these transporters. The yeast dicarboxylate carrier sequence has been used toidentify the orthologous protein in Caenorhabditis elegans and, in turn, this latter sequencehas been used to establish the sequence of the human ortholog.


Biochemical Journal | 2004

Identification of the human mitochondrial S-adenosylmethionine transporter: bacterial expression, reconstitution, functional characterization and tissue distribution.

Gennaro Agrimi; M A Di Noia; Carlo M.T. Marobbio; Giuseppe Fiermonte; Francesco M. Lasorsa; Ferdinando Palmieri

The mitochondrial carriers are a family of transport proteins that, with a few exceptions, are found in the inner membranes of mitochondria. They shuttle metabolites and cofactors through this membrane, and connect cytoplasmic functions with others in the matrix. SAM (S-adenosylmethionine) has to be transported into the mitochondria where it is converted into S-adenosylhomocysteine in methylation reactions of DNA, RNA and proteins. The transport of SAM has been investigated in rat liver mitochondria, but no protein has ever been associated with this activity. By using information derived from the phylogenetically distant yeast mitochondrial carrier for SAM and from related human expressed sequence tags, a human cDNA sequence was completed. This sequence was overexpressed in bacteria, and its product was purified, reconstituted into phospholipid vesicles and identified from its transport properties as the human mitochondrial SAM carrier (SAMC). Unlike the yeast orthologue, SAMC catalysed virtually only countertransport, exhibited a higher transport affinity for SAM and was strongly inhibited by tannic acid and Bromocresol Purple. SAMC was found to be expressed in all human tissues examined and was localized to the mitochondria. The physiological role of SAMC is probably to exchange cytosolic SAM for mitochondrial S-adenosylhomocysteine. This is the first report describing the identification and characterization of the human SAMC and its gene.


Biochimica et Biophysica Acta | 2000

Identification and functions of new transporters in yeast mitochondria.

Luigi Palmieri; Francesco M. Lasorsa; Angelo Vozza; Gennaro Agrimi; Giuseppe Fiermonte; Michael J. Runswick; John E. Walker; Ferdinando Palmieri

The genome of Saccharomyces cerevisiae encodes 35 putative members of the mitochondrial carrier family. Known members of this family transport substrates and products across the inner membranes of mitochondria. We are attempting to identify the functions of the yeast mitochondrial transporters via high-yield expression in Escherichia coli and/or S. cerevisiae, purification and reconstitution of their protein products into liposomes, where their transport properties are investigated. With this strategy, we have already identified the functions of seven S. cerevisiae gene products, whose structural and functional properties assigned them to the mitochondrial carrier family. The functional information obtained in the reconstituted system and the use of knock-out yeast strains can be usefully exploited for the investigation of the physiological role of individual transporters. Furthermore, the yeast carrier sequences can be used to identify the orthologous proteins in other organisms, including man.

Collaboration


Dive into the Giuseppe Fiermonte's collaboration.

Top Co-Authors

Avatar

Ferdinando Palmieri

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesco De Leonardis

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge