Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesco Vieceli Dalla Sega is active.

Publication


Featured researches published by Francesco Vieceli Dalla Sega.


Biochimica et Biophysica Acta | 2014

Specific aquaporins facilitate Nox-produced hydrogen peroxide transport through plasma membrane in leukaemia cells

Francesco Vieceli Dalla Sega; Laura Zambonin; Diana Fiorentini; Benedetta Rizzo; Cristiana Caliceti; Laura Landi; Silvana Hrelia; Cecilia Prata

In the last decade, the generation and the role of reactive oxygen species (ROS), particularly hydrogen peroxide, in cell signalling transduction pathways have been intensively studied, and it is now clear that an increase of ROS level affects cellular growth and proliferation pathways related to cancer development. Hydrogen peroxide (H2O2) has been long thought to permeate biological membranes by simple diffusion since recent evidence challenged this notion disclosing the role of aquaporin water channels (AQP) in mediating H2O2 transport across plasma membranes. We previously demonstrated that NAD(P)H oxidase (Nox)-generated ROS sustain glucose uptake and cellular proliferation in leukaemia cells. The aim of this study was to assess whether specific AQP isoforms can channel Nox-produced H2O2 across the plasma membrane of leukaemia cells affecting downstream pathways linked to cell proliferation. In this work, we demonstrate that AQP inhibition caused a decrease in intracellular ROS accumulation in leukaemia cells both when H2O2 was produced by Nox enzymes and when it was exogenously added. Furthermore, AQP8 overexpression or silencing resulted to modulate VEGF capacity of triggering an H2O2 intracellular level increase or decrease, respectively. Finally, we report that AQP8 is capable of increasing H2O2-induced phosphorylation of both PI3K and p38 MAPK and that AQP8 expression affected positively cell proliferation. Taken together, the results here reported indicate that AQP8 is able to modulate H2O2 transport through the plasma membrane affecting redox signalling linked to leukaemia cell proliferation.


Oxidative Medicine and Cellular Longevity | 2012

Dietary Phenolic Acids Act as Effective Antioxidants in Membrane Models and in Cultured Cells, Exhibiting Proapoptotic Effects in Leukaemia Cells

Laura Zambonin; Cristiana Caliceti; Francesco Vieceli Dalla Sega; Diana Fiorentini; Silvana Hrelia; Laura Landi; Cecilia Prata

Caffeic, syringic, and protocatechuic acids are phenolic acids derived directly from food intake or come from the gut metabolism of polyphenols. In this study, the antioxidant activity of these compounds was at first evaluated in membrane models, where caffeic acid behaved as a very effective chain-breaking antioxidant, whereas syringic and protocatechuic acids were only retardants of lipid peroxidation. However, all three compounds acted as good scavengers of reactive species in cultured cells subjected to exogenous oxidative stress produced by low level of H2O2. Many tumour cells are characterised by increased ROS levels compared with their noncancerous counterparts. Therefore, we investigated whether phenolic acids, at low concentrations, comparable to those present in human plasma, were able to decrease basal reactive species. Results show that phenolic acids reduced ROS in a leukaemia cell line (HEL), whereas no effect was observed in normal cells, such as HUVEC. The compounds exhibited no toxicity to normal cells while they decreased proliferation in leukaemia cells, inducing apoptosis. In the debate on optimal ROS-manipulating strategies in cancer therapy, our work in leukaemia cells supports the antioxidant ROS-depleting approach.


Oxidative Medicine and Cellular Longevity | 2015

Traumatic Brain Injury and NADPH Oxidase: A Deep Relationship

Cristina Angeloni; Cecilia Prata; Francesco Vieceli Dalla Sega; Roberto Piperno; Silvana Hrelia

Traumatic brain injury (TBI) represents one of the major causes of mortality and disability in the world. TBI is characterized by primary damage resulting from the mechanical forces applied to the head as a direct result of the trauma and by the subsequent secondary injury due to a complex cascade of biochemical events that eventually lead to neuronal cell death. Oxidative stress plays a pivotal role in the genesis of the delayed harmful effects contributing to permanent damage. NADPH oxidases (Nox), ubiquitary membrane multisubunit enzymes whose unique function is the production of reactive oxygen species (ROS), have been shown to be a major source of ROS in the brain and to be involved in several neurological diseases. Emerging evidence demonstrates that Nox is upregulated after TBI, suggesting Nox critical role in the onset and development of this pathology. In this review, we summarize the current evidence about the role of Nox enzymes in the pathophysiology of TBI.


Free Radical Research | 2009

NAD(P)H oxidase isoform Nox2 plays a prosurvival role in human leukaemia cells.

Tullia Maraldi; Cecilia Prata; Francesco Vieceli Dalla Sega; Cristiana Caliceti; Laura Zambonin; Diana Fiorentini; Gabriele Hakim

The mechanism involved in the prosurvival effect of interleukin-3 on the human acute myeloid leukaemia cell line M07e is investigated. A decrease in intracellular reactive oxygen species (ROS) content, glucose transport activity and cell survival was observed in the presence of inhibitors of plasma membrane ROS sources, such as diphenylene iodonium and apocynin, and by small interference RNA for Nox2. Moreover, IL-3 incubation stimulated the synthesis of Nox2 cytosolic sub-unit p47phox and glucose transporter Glut1. Thus, the inhibition of ROS generation by Nox inhibitors stimulated apoptosis showing that ROS production, induced by IL-3 via Nox2, protects leukaemic cells from cell death. Also incubation with receptor tyrosine kinase inhibitors, such as anti-leukaemic drugs blocking the stem cell factor receptor (c-kit), showed similar effects, hinting that IL-3 transmodulates c-kit phosphorylation. These mechanisms may play an important role in acute myeloid leukaemia treatment, representing a novel therapeutic target.


PLOS ONE | 2012

Effect of Plasma Membrane Cholesterol Depletion on Glucose Transport Regulation in Leukemia Cells

Cristiana Caliceti; Laura Zambonin; Cecilia Prata; Francesco Vieceli Dalla Sega; Gabriele Hakim; Silvana Hrelia; Diana Fiorentini

GLUT1 is the predominant glucose transporter in leukemia cells, and the modulation of glucose transport activity by cytokines, oncogenes or metabolic stresses is essential for their survival and proliferation. However, the molecular mechanisms allowing to control GLUT1 trafficking and degradation are still under debate. In this study we investigated whether plasma membrane cholesterol depletion plays a role in glucose transport activity in M07e cells, a human megakaryocytic leukemia line. To this purpose, the effect of cholesterol depletion by methyl-β-cyclodextrin (MBCD) on both GLUT1 activity and trafficking was compared to that of the cytokine Stem Cell Factor (SCF). Results show that, like SCF, MBCD led to an increased glucose transport rate and caused a subcellular redistribution of GLUT1, recruiting intracellular transporter molecules to the plasma membrane. Due to the role of caveolae/lipid rafts in GLUT1 stimulation in response to many stimuli, we have also investigated the GLUT1 distribution along the fractions obtained after non ionic detergent treatment and density gradient centrifugation, which was only slightly changed upon MBCD treatment. The data suggest that MBCD exerts its action via a cholesterol-dependent mechanism that ultimately results in augmented GLUT1 translocation. Moreover, cholesterol depletion triggers GLUT1 translocation without the involvement of c-kit signalling pathway, in fact MBCD effect does not involve Akt and PLCγ phosphorylation. These data, together with the observation that the combined MBCD/SCF cell treatment caused an additive effect on glucose uptake, suggest that the action of SCF and MBCD may proceed through two distinct mechanisms, the former following a signalling pathway, and the latter possibly involving a novel cholesterol dependent mechanism.


Oxidative Medicine and Cellular Longevity | 2013

Steviol Glycosides Modulate Glucose Transport in Different Cell Types

Benedetta Rizzo; Laura Zambonin; Cristina Angeloni; Emanuela Leoncini; Francesco Vieceli Dalla Sega; Cecilia Prata; Diana Fiorentini; Silvana Hrelia

Extracts from Stevia rebaudiana Bertoni, a plant native to Central and South America, have been used as a sweetener since ancient times. Currently, Stevia extracts are largely used as a noncaloric high-potency biosweetener alternative to sugar, due to the growing incidence of type 2 diabetes mellitus, obesity, and metabolic disorders worldwide. Despite the large number of studies on Stevia and steviol glycosides in vivo, little is reported concerning the cellular and molecular mechanisms underpinning the beneficial effects on human health. The effect of four commercial Stevia extracts on glucose transport activity was evaluated in HL-60 human leukaemia and in SH-SY5Y human neuroblastoma cells. The extracts were able to enhance glucose uptake in both cellular lines, as efficiently as insulin. Our data suggest that steviol glycosides could act by modulating GLUT translocation through the PI3K/Akt pathway since treatments with both insulin and Stevia extracts increased the phosphorylation of PI3K and Akt. Furthermore, Stevia extracts were able to revert the effect of the reduction of glucose uptake caused by methylglyoxal, an inhibitor of the insulin receptor/PI3K/Akt pathway. These results corroborate the hypothesis that Stevia extracts could mimic insulin effects modulating PI3K/Akt pathway.


BioMed Research International | 2014

Role of Plasma Membrane Caveolae/Lipid Rafts in VEGF-Induced Redox Signaling in Human Leukemia Cells

Cristiana Caliceti; Laura Zambonin; Benedetta Rizzo; Diana Fiorentini; Francesco Vieceli Dalla Sega; Silvana Hrelia; Cecilia Prata

Caveolae/lipid rafts are membrane-rich cholesterol domains endowed with several functions in signal transduction and caveolin-1 (Cav-1) has been reported to be implicated in regulating multiple cancer-associated processes, ranging from tumor growth to multidrug resistance and angiogenesis. Vascular endothelial growth factor receptor-2 (VEGFR-2) and Cav-1 are frequently colocalized, suggesting an important role played by this interaction on cancer cell survival and proliferation. Thus, our attention was directed to a leukemia cell line (B1647) that constitutively produces VEGF and expresses the tyrosine-kinase receptor VEGFR-2. We investigated the presence of VEGFR-2 in caveolae/lipid rafts, focusing on the correlation between reactive oxygen species (ROS) production and glucose transport modulation induced by VEGF, peculiar features of tumor proliferation. In order to better understand the involvement of VEGF/VEGFR-2 in the redox signal transduction, we evaluated the effect of different compounds able to inhibit VEGF interaction with its receptor by different mechanisms, corroborating the obtained results by immunoprecipitation and fluorescence techniques. Results here reported showed that, in B1647 leukemia cells, VEGFR-2 is present in caveolae through association with Cav-1, demonstrating that caveolae/lipid rafts act as platforms for negative modulation of VEGF redox signal transduction cascades leading to glucose uptake and cell proliferation, suggesting therefore novel potential targets.


Oxidative Medicine and Cellular Longevity | 2015

Polyphenols as Modulators of Aquaporin Family in Health and Disease

Diana Fiorentini; Laura Zambonin; Francesco Vieceli Dalla Sega; Silvana Hrelia

Polyphenols are bioactive molecules widely distributed in fruits, vegetables, cereals, and beverages. Polyphenols in food sources are extensively studied for their role in the maintenance of human health and in the protection against development of chronic/degenerative diseases. Polyphenols act mainly as antioxidant molecules, protecting cell constituents against oxidative damage. The enormous number of polyphenolic compounds leads to huge different mechanisms of action not fully understood. Recently, some evidence is emerging about the role of polyphenols, such as curcumin, pinocembrin, resveratrol, and quercetin, in modulating the activity of some aquaporin (AQP) isoforms. AQPs are integral, small hydrophobic water channel proteins, extensively expressed in many organs and tissues, whose major function is to facilitate the transport of water or glycerol over cell plasma membranes. Here we summarize AQP physiological functions and report emerging evidence on the implication of these proteins in a number of pathophysiological processes. In particular, this review offers an overview about the role of AQPs in brain, eye, skin diseases, and metabolic syndrome, focusing on the ability of polyphenols to modulate AQP expression. This original analysis can contribute to elucidating some peculiar effects exerted by polyphenols and can lead to the development of an innovative potential preventive/therapeutic strategy.


Leukemia Research | 2010

Inhibition of trans-plasma membrane electron transport: A potential anti-leukemic strategy

Cecilia Prata; Carole Grasso; Stefano Loizzo; Francesco Vieceli Dalla Sega; Cristiana Caliceti; Laura Zambonin; Diana Fiorentini; Gabriele Hakim; Michael V. Berridge; Laura Landi

The recently demonstrated reliance of glycolytic cancer cells on trans-plasma membrane electron transport (tPMET) for survival raises the question of its suitability as a target for anticancer drug development. In this study, the effects of several new and known compounds on proliferation, tPMET activity and NAD(P)H intrinsic fluorescence in human myelogenous leukemic cell lines were investigated. The whole data confirm the importance of tPMET in leukemic cell survival and suggest this activity as a new potential anti-leukemic target.


Bioorganic & Medicinal Chemistry | 2010

Antitumor activity and COMPARE analysis of bis-indole derivatives ☆

Aldo Andreani; Silvia Burnelli; Massimiliano Granaiola; Alberto Leoni; Alessandra Locatelli; Rita Morigi; Mirella Rambaldi; Lucilla Varoli; Laura Landi; Cecilia Prata; Francesco Vieceli Dalla Sega; Cristiana Caliceti; Robert H. Shoemaker

This paper reports the synthesis of new derivatives (formed by two indole systems separated by a central moiety) analogous of potent antitumor agents previously described. The activity of the bis-indoles bearing a pyridine core confirms the good result described in the previous paper and compound 4c was chosen for the first in vivo experiment (Hollow Fiber Assay). COMPARE analysis and structure-activity relationships were also considered. Contrary to data reported by other Authors, no correlations were found between antitumor activity and NQO1 induction.

Collaboration


Dive into the Francesco Vieceli Dalla Sega's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tullia Maraldi

University of Modena and Reggio Emilia

View shared research outputs
Researchain Logo
Decentralizing Knowledge