Francis Schaffner
University of Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francis Schaffner.
eLife | 2015
Moritz U. G. Kraemer; Marianne E. Sinka; Kirsten A. Duda; Adrian Mylne; Freya M Shearer; Christopher M. Barker; Chester G. Moore; Roberta Gomes Carvalho; Giovanini Evelim Coelho; Wim Van Bortel; Guy Hendrickx; Francis Schaffner; Iqbal Elyazar; Hwa-Jen Teng; Oliver J. Brady; Jane P. Messina; David M Pigott; Thomas W. Scott; David L. Smith; G. R. William Wint; Nick Golding; Simon I. Hay
Dengue and chikungunya are increasing global public health concerns due to their rapid geographical spread and increasing disease burden. Knowledge of the contemporary distribution of their shared vectors, Aedes aegypti and Aedes albopictus remains incomplete and is complicated by an ongoing range expansion fuelled by increased global trade and travel. Mapping the global distribution of these vectors and the geographical determinants of their ranges is essential for public health planning. Here we compile the largest contemporary database for both species and pair it with relevant environmental variables predicting their global distribution. We show Aedes distributions to be the widest ever recorded; now extensive in all continents, including North America and Europe. These maps will help define the spatial limits of current autochthonous transmission of dengue and chikungunya viruses. It is only with this kind of rigorous entomological baseline that we can hope to project future health impacts of these viruses. DOI: http://dx.doi.org/10.7554/eLife.08347.001
Vector-borne and Zoonotic Diseases | 2012
Jolyon M. Medlock; Kayleigh M. Hansford; Francis Schaffner; V. Versteirt; Guy Hendrickx; Hervé Zeller; Wim Van Bortel
There has been growing interest in Europe in recent years in the establishment and spread of invasive mosquitoes, notably the incursion of Aedes albopictus through the international trade in used tires and lucky bamboo, with onward spread within Europe through ground transport. More recently, five other non-European aedine mosquito species have been found in Europe, and in some cases populations have established locally and are spreading. Concerns have been raised about the involvement of these mosquito species in transmission cycles of pathogens of public health importance, and these concerns were borne out following the outbreak of chikungunya fever in Italy in 2007, and subsequent autochthonous cases of dengue fever in France and Croatia in 2010. This article reviews current understanding of all exotic (five introduced invasive and one intercepted) aedine species in Europe, highlighting the known import pathways, biotic and abiotic constraints for establishment, control strategies, and public health significance, and encourages Europe-wide surveillance for invasive mosquitoes.
Vector-borne and Zoonotic Diseases | 2008
Sara Moutailler; Ghazi Krida; Francis Schaffner; Marie Vazeille; Anna-Bella Failloux
We evaluated the ability of three mosquito species (Aedes caspius, Aedes detritus, Culex pipiens), collected in southern France and Tunisia, and of different laboratory-established colonies (Aedes aegypti, Aedes albopictus, Aedes vexans, Anopheles gambiae, Culex pipiens, Culex quinquefasciatus) to disseminate two strains of Rift Valley fever virus (RVFV), the virulent ZH548 and the avirulent Clone 13. After feeding on an infectious blood meal at 10(8.5) plaque-forming units/mL, females were maintained at 30 degrees C for 14 days. Surviving females were tested for the presence of virus on head squashes. Disseminated infection rate corresponds to the number of females with disseminated infection among surviving females. Among field-collected mosquitoes, Cx. pipiens was the most susceptible species with disseminated infection rates ranging from 3.9% to 9.1% for French strains and up to 14.7% for Tunisian strains. Among laboratory-established colonies, Ae. aegypti from Tahiti exhibited the highest disseminated infection rates: 90% when infected with ZH548 and 72.6% with Clone 13. The presence of competent Cx. pipiens in southern France and Tunisia indicates the potential for RVFV epizootics to occur if the virus was introduced into countries of the Mediterranean basin.
Genetics Research | 2005
Laurence Mousson; Catherine Dauga; Thomas Garrigues; Francis Schaffner; Marie Vazeille; Anna-Bella Failloux
Aedes (Stegomyia) aegypti (l.) and Aedes (Stegomyia) albopictus (Skuse) are the most important vectors of the dengue and yellow-fever viruses. Both took advantage of trade developments to spread throughout the tropics from their native area: A. aegypti originated from Africa and a. albopictus from South-East Asia. We investigated the relationships between A. aegypti and A. albopictus mosquitoes based on three mitochondrial-DNA genes (cytochrome b, cytochrome oxidase I and NADH dehydrogenase subunit 5). Little genetic variation was observed for a. albopictus, probably owing to the recent spreading of the species via human activities. For A. aegypti, most populations from South America were found to be genetically similar to populations from South-East Asia (Thailand and Vietnam), except for one sample from Boa Vista (northern Amazonia), which was more closely related to samples from Africa (Guinea and Ivory Coast). This suggests that African populations of A. aegypti introduced during the slave trade have persisted in Boa Vista, resisting eradication campaigns.
Clinical Microbiology and Infection | 2013
Francis Schaffner; Jolyon M. Medlock; W. Van Bortel
There are currently five invasive Aedes mosquito species known to be established in Europe, namely Aedes albopictus, Aedes aegypti, Aedes japonicus, Aedes atropalpus and Aedes koreicus. Aedes albopictus and Aedes aegypti are the incriminated vectors in the recent outbreaks of chikungunya and dengue fever in Europe. However, both laboratory experiments and field observations indicate that these invasive mosquitoes have a potential to also transmit other pathogens of public health importance. Increasing travel and pathogen introduction, expansion of vector distribution, and both environmental and climatic changes are likely to raise the risk of pathogen transmission by these invasive Aedes mosquitoes. Their vector status and their involvement in pathogen transmission are dynamic processes that shape the future of mosquito-borne disease epidemiology in Europe. Beside vector surveillance, enhanced disease surveillance will enable the early detection of cases and the prompt implementation of control measures.
Scientific Data | 2015
Moritz U. G. Kraemer; Marianne E. Sinka; Kirsten A. Duda; Adrian Mylne; Freya M Shearer; Oliver J. Brady; Jane P. Messina; Christopher M. Barker; Chester G. Moore; Roberta Gomes Carvalho; Giovanini Evelim Coelho; Wim Van Bortel; Guy Hendrickx; Francis Schaffner; G. R. William Wint; Iqbal Elyazar; Hwa-Jen Teng; Simon I. Hay
Aedes aegypti and Ae. albopictus are the main vectors transmitting dengue and chikungunya viruses. Despite being pathogens of global public health importance, knowledge of their vectors’ global distribution remains patchy and sparse. A global geographic database of known occurrences of Ae. aegypti and Ae. albopictus between 1960 and 2014 was compiled. Herein we present the database, which comprises occurrence data linked to point or polygon locations, derived from peer-reviewed literature and unpublished studies including national entomological surveys and expert networks. We describe all data collection processes, as well as geo-positioning methods, database management and quality-control procedures. This is the first comprehensive global database of Ae. aegypti and Ae. albopictus occurrence, consisting of 19,930 and 22,137 geo-positioned occurrence records respectively. Both datasets can be used for a variety of mapping and spatial analyses of the vectors and, by inference, the diseases they transmit.
Medical and Veterinary Entomology | 2009
Francis Schaffner; Christian Kaufmann; Daniel Hegglin; Alexander Mathis
Complaints about a biting pest led to the recognition of invasive Aedes (Finlaya) japonicus japonicus (Theobald) (Diptera: Culicidae) in Central Europe. Larval collections from cemetery vases revealed a colonized area of approximately 1400 km2 in northern Switzerland spreading into bordering Germany, suggesting that the mosquito has been established in this region for several years. Within this range, larvae of Ae. japonicus were recovered from more containers than the most common resident culicid species Culex pipiens. Possible introduction sites (used tyre yards and international airports) revealed few or no larvae, and the mode of introduction remains unclear. Given the vector potential of this species for arboviruses, implementation of surveillance and control measures should be considered.
Vector-borne and Zoonotic Diseases | 2008
Thomas Balenghien; Marie Vazeille; Marc Grandadam; Francis Schaffner; Hervé Zeller; Paul Reiter; Philippe Sabatier; Florence Fouque; Dominique J. Bicout
To identify the mosquito species able to sustain the transmission of West Nile Virus (WNV) in the Camargue region (the main WNV focus of southern France), we assessed the vector competence of Culex modestus and Culex pipiens, the most abundant bird-feeders, and Aedes caspius, the most abundant mammophilic species occasionally found engorged with avian blood. Female mosquitoes were exposed to the infectious meal (10(10.3) plaque forming units (PFU)/mL) by membrane feeding, and hold at 26 degrees C. After the incubation period, disseminated infection was assessed by WNV detection using an indirect fluorescent antibody assay (IFA) on head squashes, and the transmission rate was assessed by the presence of WNV RNA in salivary secretions with a real-time reverse transcriptase-polymerase chain reaction (RT-PCR). After 14 incubation days, the disseminated infection and the transmission rates were 89.2% and 54.5% for Cx. modestus, 38.5% and 15.8% for Cx. pipiens, and 0.8% and 0 for Ae. caspius. Culex modestus was found to be an extremely efficient laboratory WNV vector and could thus be considered the main WNV vector in wetlands of the Camargue. Culex pipiens was a moderately efficient laboratory WNV vector, but in dry areas of the region it could play the main role in WNV transmission between birds and from birds to mammals. Aedes caspius was an inefficient vector of WNV in the laboratory, and despite its high densities, its role in WNV transmission may be minor in southern France.
Lancet Infectious Diseases | 2014
Francis Schaffner; Alexander Mathis
After 55 years of absence, dengue has re-emerged in the WHO European region both as locally transmitted sporadic cases and as an outbreak in Madeira, driven by the introduction of people infected with the virus and the invasion of the vector mosquito species Aedes aegypti and Aedes albopictus. Models predict a further spread of A albopictus, particularly under climate change conditions. Dengue transmission models suggest a low risk in Europe, but these models too rarely include transmission by A albopictus (the main established vector). Further information gaps exist with regard to the Caucasus and central Asian countries of the WHO European region. Many European countries have implemented surveillance and control measures for invasive mosquitoes, but only a few include surveillance for dengue. As long as no dengue-specific prophylaxis or therapeutics are available, integrated vector management is the most sustainable control option. The rapid elimination of newly introduced A aegypti populations should be targeted in the European region, particularly in southern Europe and the Caucasus, where the species was present for decades until the 1950s.
International Journal of Environmental Research and Public Health | 2013
Olivier Engler; Giovanni Savini; Anna Papa; Jordi Figuerola; Martin H. Groschup; Helge Kampen; Jolyon M. Medlock; Alexander G.C. Vaux; Anthony J. Wilson; Doreen Werner; Hanna Jöst; Maria Goffredo; Gioia Capelli; Valentina Federici; Mauro Tonolla; Nicola Patocchi; Eleonora Flacio; Jasmine Portmann; Anya Rossi-Pedruzzi; Spiros Mourelatos; Santiago Ruiz; Ana Vázquez; Mattia Calzolari; Paolo Bonilauri; Michele Dottori; Francis Schaffner; Alexander Mathis; Nicholas Johnson
A wide range of arthropod-borne viruses threaten both human and animal health either through their presence in Europe or through risk of introduction. Prominent among these is West Nile virus (WNV), primarily an avian virus, which has caused multiple outbreaks associated with human and equine mortality. Endemic outbreaks of West Nile fever have been reported in Italy, Greece, France, Romania, Hungary, Russia and Spain, with further spread expected. Most outbreaks in Western Europe have been due to infection with WNV Lineage 1. In Eastern Europe WNV Lineage 2 has been responsible for human and bird mortality, particularly in Greece, which has experienced extensive outbreaks over three consecutive years. Italy has experienced co-circulation with both virus lineages. The ability to manage this threat in a cost-effective way is dependent on early detection. Targeted surveillance for pathogens within mosquito populations offers the ability to detect viruses prior to their emergence in livestock, equine species or human populations. In addition, it can establish a baseline of mosquito-borne virus activity and allow monitoring of change to this over time. Early detection offers the opportunity to raise disease awareness, initiate vector control and preventative vaccination, now available for horses, and encourage personal protection against mosquito bites. This would have major benefits through financial savings and reduction in equid morbidity/mortality. However, effective surveillance that predicts virus outbreaks is challenged by a range of factors including limited resources, variation in mosquito capture rates (too few or too many), difficulties in mosquito identification, often reliant on specialist entomologists, and the sensitive, rapid detection of viruses in mosquito pools. Surveillance for WNV and other arboviruses within mosquito populations varies between European countries in the extent and focus of the surveillance. This study reviews the current status of WNV in mosquito populations across Europe and how this is informing our understanding of virus epidemiology. Key findings such as detection of virus, presence of vector species and invasive mosquito species are summarized, and some of the difficulties encountered when applying a cost-effective surveillance programme are highlighted.