Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francis X. Tavares is active.

Publication


Featured researches published by Francis X. Tavares.


Molecular Cancer Therapeutics | 2016

Preclinical Characterization of G1T28: A Novel CDK4/6 Inhibitor for Reduction of Chemotherapy-Induced Myelosuppression

John E. Bisi; Jessica A. Sorrentino; Patrick J. Roberts; Francis X. Tavares; Jay C. Strum

Chemotherapy-induced myelosuppression continues to represent the major dose-limiting toxicity of cytotoxic chemotherapy, which can be manifested as neutropenia, lymphopenia, anemia, and thrombocytopenia. As such, myelosuppression is the source of many of the adverse side effects of cancer treatment including infection, sepsis, bleeding, and fatigue, thus resulting in the need for hospitalizations, hematopoietic growth factor support, and transfusions (red blood cells and/or platelets). Moreover, clinical concerns raised by myelosuppression commonly lead to chemotherapy dose reductions, therefore limiting therapeutic dose intensity, and reducing the antitumor effectiveness of the treatment. Currently, the only course of treatment for myelosuppression is growth factor support which is suboptimal. These treatments are lineage specific, do not protect the bone marrow from the chemotherapy-inducing cytotoxic effects, and the safety and toxicity of each agent is extremely specific. Here, we describe the preclinical development of G1T28, a novel potent and selective CDK4/6 inhibitor that transiently and reversibly regulates the proliferation of murine and canine bone marrow hematopoietic stem and progenitor cells and provides multilineage protection from the hematologic toxicity of chemotherapy. Furthermore, G1T28 does not decrease the efficacy of cytotoxic chemotherapy on RB1-deficient tumors. G1T28 is currently in clinical development for the reduction of chemotherapy-induced myelosuppression in first- and second-line treatment of small-cell lung cancer. Mol Cancer Ther; 15(5); 783–93. ©2016 AACR.


Bioorganic & Medicinal Chemistry Letters | 2009

Anthranilimide based glycogen phosphorylase inhibitors for the treatment of type 2 diabetes. Part 3: X-ray crystallographic characterization, core and urea optimization and in vivo efficacy.

Stephen A. Thomson; Pierette Banker; David M. Bickett; Joyce A. Boucheron; H.L Carter; Daphne C. Clancy; Joel P. Cooper; Scott Howard Dickerson; Dulce Maria Garrido; Robert T. Nolte; Andrew J. Peat; Lauren R. Sheckler; Steven M. Sparks; Francis X. Tavares; Liping Wang; Tony Y. Wang; James E. Weiel

Key binding interactions of the anthranilimide based glycogen phosphorylase a (GPa) inhibitor 2 from X-ray crystallography studies are described. This series of compounds bind to the AMP site of GP. Using the binding information the core and the phenyl urea moieties were optimized. This work culminated in the identification of compounds with single nanomolar potency as well as in vivo efficacy in a diabetic model.


Bioorganic & Medicinal Chemistry Letters | 2008

Amino acid anthranilamide derivatives as a new class of glycogen phosphorylase inhibitors

Karen A. Evans; Yue H. Li; Frank T. Coppo; Todd L. Graybill; Maria Cichy-Knight; Mehul Patel; Jennifer Gale; Hu Li; Sara H. Thrall; David G. Tew; Francis X. Tavares; Stephen A. Thomson; James E. Weiel; Joyce A. Boucheron; Daphne C. Clancy; Andrea H. Epperly; Pamela L. Golden

A series of amino acid anthranilamide derivatives identified from a high-throughput screening campaign as novel, potent, and glucose-sensitive inhibitors of human liver glycogen phosphorylase a are described. A solid-phase synthesis using Wang resin was also developed which provided efficient access to a variety of analogues, and resulted in the identification of key structure-activity relationships, and the discovery of a potent exemplar (IC(50)=80 nM). The SAR scope, synthetic strategy, and in vitro results for this series are presented herein.


Bioorganic & Medicinal Chemistry Letters | 2009

Anthranilimide-based glycogen phosphorylase inhibitors for the treatment of type 2 diabetes: 1. Identification of 1-amino-1-cycloalkyl carboxylic acid headgroups.

Steven M. Sparks; Pierette Banker; David M. Bickett; H. Luke Carter; Daphne C. Clancy; Scott Howard Dickerson; Kate A. Dwornik; Dulce Maria Garrido; Pamela L. Golden; Robert T. Nolte; Andrew J. Peat; Lauren R. Sheckler; Francis X. Tavares; Stephen A. Thomson; Liping Wang; James E. Weiel

Optimization of the amino acid residue within a series of anthranilimide-based glycogen phosphorylase inhibitors is described. These studies culminated in the identification of anthranilimides 16 and 22 which displayed potent in vitro inhibition of GPa in addition to reduced inhibition of CYP2C9 and excellent pharmacokinetic properties.


Bioorganic & Medicinal Chemistry Letters | 2009

Anthranilimide-based glycogen phosphorylase inhibitors for the treatment of Type 2 diabetes: 2. Optimization of serine and threonine ether amino acid residues

Steven M. Sparks; Pierette Banker; David M. Bickett; Daphne C. Clancy; Scott Howard Dickerson; Dulce Maria Garrido; Pamela L. Golden; Andrew J. Peat; Lauren R. Sheckler; Francis X. Tavares; Stephen A. Thomson; James E. Weiel

Optimization of the amino acid residue of a series of anthranilimide-based glycogen phosphorylase inhibitors is described leading to the identification of serine and threonine ether analogs. t-Butylthreonine analog 20 displayed potent in vitro inhibition of GPa, low potential for P450 inhibition, and excellent pharmacokinetic properties.


Oncotarget | 2017

Preclinical development of G1T38: A novel, potent and selective inhibitor of cyclin dependent kinases 4/6 for use as an oral antineoplastic in patients with CDK4/6 sensitive tumors

John E. Bisi; Jessica A. Sorrentino; Jamie L. Jordan; David Darr; Patrick J. Roberts; Francis X. Tavares; Jay C. Strum

Inhibition of the p16INK4a/cyclin D/CDK4/6/RB pathway is an effective therapeutic strategy for the treatment of estrogen receptor positive (ER+) breast cancer. Although efficacious, current treatment regimens require a dosing holiday due to severe neutropenia potentially leading to an increased risk of infections, as well as tumor regrowth and emergence of drug resistance. Therefore, a next generation CDK4/6 inhibitor that can inhibit proliferation of CDK4/6-dependent tumors while minimizing neutropenia could reduce both the need for treatment holidays and the risk of inducing drug resistance. Here, we describe the preclinical characterization and development of G1T38; a novel, potent, selective, and orally bioavailable CDK4/6 inhibitor. In vitro, G1T38 decreased RB1 (RB) phosphorylation, caused a precise G1 arrest, and inhibited cell proliferation in a variety of CDK4/6-dependent tumorigenic cell lines including breast, melanoma, leukemia, and lymphoma cells. In vivo, G1T38 treatment led to equivalent or improved tumor efficacy compared to the first-in-class CDK4/6 inhibitor, palbociclib, in an ER+ breast cancer xenograft model. Furthermore, G1T38 accumulated in mouse xenograft tumors but not plasma, resulting in less inhibition of mouse myeloid progenitors than after palbociclib treatment. In larger mammals, this difference in pharmacokinetics allowed for 28 day continuous dosing of G1T38 in beagle dogs without producing severe neutropenia. These data demonstrate G1T38 has unique pharmacokinetic and pharmacodynamic properties, which result in high efficacy against CDK4/6 dependent tumors while minimizing the undesirable on-target bone marrow activity, thus potentially allowing G1T38 to be used as a continuous, daily oral antineoplastic agent.


Nucleic Acids Research | 2018

Structure–activity relationships and cellular mechanism of action of small molecules that enhance the delivery of oligonucleotides

Rudolph L. Juliano; Ling Wang; Francis X. Tavares; Edward G Brown; Lindsey I. James; Yamuna Ariyarathna; Xin Ming; Chengqiong Mao; Mark J. Suto

Abstract The pharmacological effects of antisense and siRNA oligonucleotides are hindered by the tendency of these molecules to become entrapped in endomembrane compartments thus failing to reach their targets in the cytosol or nucleus. We have previously used high throughput screening to identify small molecules that enhance the escape of oligonucleotides from intracellular membrane compartments and have termed such molecules OECs (oligonucleotide enhancing compounds). Here, we report on the structure–activity relationships of a family of OECs that are analogs of a hit that emerged from our original screen. These studies demonstrate key roles for the lipophilic aromatic groups, the tertiary nitrogen, and the carbamate moiety of the parent compound. We have also investigated the intracellular site of action of the OECs and have shown that activity is due to the release of oligonucleotides from intermediate endosomal compartments rather than from early endosomes or from highly acidic downstream compartments. At high concentrations of OECs toxicity occurs in a manner that is independent of caspases or of lysosomal cathepsins but instead involves increased plasma membrane permeability. Thus, in addition to describing specific characteristics of this family of OECs, the current study provides insights into basic mechanisms of oligonucleotide trafficking and their implications for oligonucleotide delivery.


Journal of Medicinal Chemistry | 2004

N-Phenyl-4-pyrazolo[1,5-b]pyridazin-3-ylpyrimidin-2-amines as potent and selective inhibitors of glycogen synthase kinase 3 with good cellular efficacy

Francis X. Tavares; Joyce A. Boucheron; Scott Howard Dickerson; Robert J. Griffin; Frank Preugschat; Stephen A. Thomson; Tony Y. Wang; Huiqiang Zhou


Bioorganic & Medicinal Chemistry Letters | 2006

The discovery and optimization of pyrimidinone-containing MCH R1 antagonists.

Donald L. Hertzog; Kamal A. Al-Barazanji; Eric C. Bigham; Michael J. Bishop; Christy S. Britt; David L. Carlton; Joel P. Cooper; Alex J. Daniels; Dulce Maria Garrido; Aaron S. Goetz; Mary K. Grizzle; Yu C. Guo; Anthony L. Handlon; Diane M. Ignar; Ronda O. Morgan; Andrew J. Peat; Francis X. Tavares; Huiqiang Zhou


Journal of Medicinal Chemistry | 2004

Design of potent, selective, and orally bioavailable inhibitors of cysteine protease cathepsin k.

Francis X. Tavares; Virginia M. Boncek; David N. Deaton; Anne M. Hassell; Stacey T. Long; Aaron B. Miller; Alan A. Payne; Larry R. Miller; Lisa M. Shewchuk; Kevin J. Wells-Knecht; Derril H. Willard; Lois L. Wright; Huiqiang Zhou

Collaboration


Dive into the Francis X. Tavares's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge