Francisca Barceló
University of the Balearic Islands
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francisca Barceló.
Molecular Membrane Biology | 2004
Francisca Barceló; Jesús Prades; Sérgio S. Funari; Juan Frau; Regina Alemany; Pablo V. Escribá
We studied the interactions of the hypotensive drug, 2-hydroxyoleic acid (2OHOA), with model membranes using the techniques of DSC, 31P NMR and X-ray diffraction. We demonstrate that 2OHOA alters the thermotropic behaviour of 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine (DEPE), thereby promoting the formation of hexagonal phases (HII), despite stabilizing the lamellar phase (Lα). The lattice parameters of lamellar and non-lamellar structures were not altered by the presence of 2OHOA. The molecular bases underlying the alterations in membrane structure provoked by 2OHOA were analysed by comparing the effects produced by 2OHOA with the closely related fatty acids (FAs), oleic acid (OA) and elaidic acid (EA). The capacity of C-18 FAs to induce HII-phase formation followed the order OA>2OHOA>EA. Furthermore, while 2OHOA stabilized the Lα phase, OA destabilized it. The net negative charge of 2OHOA at physiological pH (∼7.4) influenced its effect on membrane structure. By analysing the molecular architecture of 2OHOA in DEPE monolayers, interactions between the carboxylate groups of 2OHOA and the amine groups of DEPE were observed, as well as between the 2-hydroxyl group of the FA and the carbonyl oxygen of the phospholipid acyl chain. These structural characteristics provoked an increase in the P-to-N and P-to-P distances of neighbouring phospholipid headgroups in the presence of 2OHOA, with respect to those observed with OA and EA. The higher headgroup area at the lipid–water interface in presence of 2OHOA could account for the differential effect of this drug on the phase behaviour of DEPE membranes.
Biochemistry | 2010
Francisca Barceló; Miguel Ortiz-Lombardía; Miquel Martorell; Miquel Oliver; Carmen Méndez; José A. Salas; J. Portugal
The antitumor antibiotics mithramycin A and chromomycin A(3) bind reversibly to the minor groove of G/C-rich regions in DNA in the presence of dications such as Mg(2+), and their antiproliferative activity has been associated with their ability to block the binding of certain transcription factors to gene promoters. Despite their biological activity, their use as anticancer agents is limited by severe side effects. Therefore, in our pursuit of new structurally related molecules showing both lower toxicity and higher biological activity, we have examined the binding to DNA of six analogues that we have obtained by combinatorial biosynthetic procedures in the producing organisms. All these molecules bear a variety of changes in the side chain attached to C-3 of the chromophore. The spectroscopic characterization of their binding to DNA followed by the evaluation of binding parameters and associated thermodynamics revealed differences in their binding affinity. DNA binding was entropically driven, dominated by the hydrophobic transfer of every compound from solution into the minor groove of DNA. Among the analogues, mithramycin SDK and chromomycin SDK possessed the higher DNA binding affinities.
Hypertension | 2009
Francisca Barceló; Javier S. Perona; Jesús Prades; Sérgio S. Funari; Enrique Gómez-Gracia; Manuel Conde; Ramón Estruch; Valentina Ruiz-Gutiérrez
A currently ongoing randomized trial has revealed that the Mediterranean diet, rich in virgin olive oil or nuts, reduces systolic blood pressure in high-risk cardiovascular patients. Here, we present a structural substudy to assess the effect of a Mediterranean-style diet supplemented with nuts or virgin olive oil on erythrocyte membrane properties in 36 hypertensive participants after 1 year of intervention. Erythrocyte membrane lipid composition, structural properties of reconstituted erythrocyte membranes, and serum concentrations of inflammatory markers are reported. After the intervention, the membrane cholesterol content decreased, whereas that of phospholipids increased in all of the dietary groups; the diminishing cholesterol:phospholipid ratio could be associated with an increase in the membrane fluidity. Moreover, reconstituted membranes from the nuts and virgin olive oil groups showed a higher propensity to form a nonlamellar inverted hexagonal phase structure that was related to an increase in phosphatidylethanolamine lipid class. These data suggest that the Mediterranean-style diet affects the lipid metabolism that is altered in hypertensive patients, influencing the structural membrane properties. The erythrocyte membrane modulation described provides insight in the structural bases underlying the beneficial effect of a Mediterranean-style diet in hypertensive subjects.
Biochemical Pharmacology | 1988
Francisca Barceló; Jordi Martorell; Francisco Gavilanes; José M. González-Ros
Absorbance and fluorescence quenching monitoring of the binding of the anthracyclines adriamycin (ADM) and daunomycin (DNM) to calf thymus DNA, provides reproducible binding data only when moderate drug/DNA molar ratios are used in the assays. Under these conditions, the fraction of DNA-bound drug, in equilibrium with free anthracycline, which can be reliably detected, ranged from 40-60% to 80-95% of the total added drug, depending upon ionic strength and temperature. Use of the neighbour exclusion model adequately fits such data and predicts that (i) the affinity of ADM for binding to the DNA is always higher than that corresponding to DNM, under similar experimental conditions, (ii) the binding constant for both drugs exhibits a strong salt and temperature dependence, and (iii) the exclusion parameter, indicative of the size of the anthracycline binding sites on the DNA, equals 3.1 +/- 0.4 and 3.3 +/- 0.4 base pairs for ADM and DNM, respectively, and is independent of salt concentration. The salt and temperature dependence of the binding constant is used to estimate the thermodynamic parameters involved in the interaction of the drugs with the DNA. Binding of the drugs is an exothermic process and the binding free energy arises primarily from a large negative enthalpy which, as the entropy, strongly depends upon ionic strength, and is much larger than predicted by polyelectrolyte theory. The enthalpy and entropy changes observed, appear to compensate each other over the entire range of salt concentrations used, and may arise from a complex variety of contributions, including salt-induced changes in secondary structure of the DNA, as indicated by circular dichroism techniques.
Journal of Lipid Research | 2006
Regina Alemany; Oliver Vögler; Silvia Terés; Carolina Egea; Carmela Baamonde; Francisca Barceló; Carlos Delgado; Karl H. Jakobs; Pablo V. Escribá
Olive oil consumption leads to high monounsaturated fatty acid intake, especially oleic acid, and has been associated with a reduced risk of hypertension. However, the molecular mechanisms and contribution of its different components to lower blood pressure (BP) require further evaluation. Here, we examined whether a synthetic, non-β-oxidation-metabolizable derivative of oleic acid, 2-hydroxyoleic acid (2-OHOA), can normalize BP in adult spontaneously hypertensive rats (SHRs) and whether its antihypertensive action involves cAMP-dependent protein kinase A (PKA) and Rho kinase, two major regulators of vascular smooth muscle contraction. Oral administration of 2-OHOA to SHRs induced sustained systolic BP decreases in a time-dependent (1–7 days) and dose-dependent (100–900 mg/kg every 12 h) manner. After 7 days of treatment with 2-OHOA (600 mg/kg), the systolic BP of SHRs was similar to that of normotensive Wistar Kyoto rats, returning to its initial hypertensive level after withdrawal of 2-OHOA. This treatment strongly increased the protein expression of the catalytic and regulatory RIα and RIIα PKA subunits as well as PKA activity in aortas from SHRs. Consistently, administration of the PKA inhibitor 8-bromo adenosine-3′,5′-cyclic monophosphorothioate, Rp isomer, to 2-OHOA-treated SHRs induced a pronounced reversal (up to 59%) of the antihypertensive effect of 2-OHOA. Additionally, 2-OHOA completely reversed the pathological overexpression of aortic Rho kinase found in SHRs, suppressing the vasoconstrictory Rho kinase pathway.
PLOS ONE | 2012
Victor H. Villar; Oliver Vögler; Jordi Martinez-Serra; Rafael Ramos; Silvia Calabuig-Fariñas; Antonio Gutiérrez; Francisca Barceló; Javier Martín-Broto; Regina Alemany
The therapeutic effect of doxorubicin (DXR) in the treatment of soft tissue sarcomas (STS) is limited by its toxicity and the development of multidrug resistance (MDR), the latter mainly induced by high expression of efflux pumps (e.g., P-glycoprotein [P-gp]). Therefore, the search for alternative therapies, which sensitize these tumors to chemotherapy while maintaining a low toxicity profile, is a rational approach. We assessed efficacy and molecular mechanisms involved in the antiproliferative effects of the tyrosine kinase inhibitors, nilotinib and imatinib, as single agents or in combination with DXR, in human synovial sarcoma SW982 and leiomyosarcoma SK-UT-1 cells. As single compound nilotinib (1–10 µM) was more potent than imatinib inhibiting the growth of SK-UT-1 and SW982 cells by 33.5–59.6%, respectively. Importantly, only nilotinib synergized the antitumoral effect of DXR (0.05–0.5 µM) by at least 2-fold, which clearly surpassed the mere sum of effects according to isobolographic analysis. Moreover, nilotinib in combination with DXR had a sustained effect on cell number (−70.3±5.8%) even 12 days after withdrawal of drugs compared to DXR alone. On the molecular level, only nilotinib fully blocked FBS-induced ERK1 and p38 MAPK activation, hence, reducing basal and DXR-induced up-regulation of P-gp levels. Moreover, efflux activity of the MDR-related proteins P-gp and MRP-1 was inhibited, altogether resulting in intracellular DXR retention. In high-risk STS tumors 53.8% and 15.4% were positive for P-gp and MRP-1 expression, respectively, with high incidence of P-gp in synovial sarcoma (72.7%). In summary, nilotinib exhibits antiproliferative effects on cellular models of STS and sensitizes them to DXR by reverting DXR-induced P-gp-mediated MDR and inhibiting MRP-1 activity, leading to a synergistic effect with potential for clinical treatment.
Biochimica et Biophysica Acta | 2001
Francisca Barceló; Miguel Ortiz-Lombardía; J. Portugal
Isothermal titration calorimetry (ITC) profiles of berenil bound to different DNAs show that, despite the strong preference of berenil for AT-rich regions in DNA, it can bind to other DNA sequences significantly. The ITC results were used to quantify the binding of berenil, and the thermodynamic profiles were obtained using natural DNAs as well as synthetic polynucleotides. ITC binding isotherms cannot be simply described when a single set of identical binding sites is considered, except for poly[d(A-T)2]. Ultraviolet melting of DNA and differential scanning calorimetry were also used to quantify several aspects of the binding of berenil to salmon testes DNA. We present evidence for secondary binding sites for berenil in DNA, corresponding to G+C rich sites. Berenil binding to poly[d(G-C)2] is also observed. Circular dichroism experiments showed that binding to GC-rich sites involves drug intercalation. Using a molecular modeling approach we demonstrate that intercalation of berenil into CpG steps is sterically feasible.
Molecular Membrane Biology | 2005
Sérgio S. Funari; Jesús Prades; Pablo V. Escribá; Francisca Barceló
The biological activity of farnesol (FN) and geranylgeraniol (GG) and their isoprenyl groups is related to membrane-associated processes. We have studied the interactions of FN and GG with 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine (DEPE) membranes using DSC and X-ray diffraction. Storage of samples at low temperature for a long time favors a multidomain system formed by a lamellar crystalline (Lc) phase and isoprenoids (ISPs) aggregates. We demonstrate that ISPs alter the thermotropic behavior of DEPE, thereby promoting a HII growth in a lamellar Lc phase with a reduced degree of hydration. The HII phase occurs with the same repeat distance (dHII=5.4 nm) as the Lc phase and upon heating it expands considerably (δd/δT≈0.22 nm/°C). The dimensional stabilization of this HII phase coincides with the transition temperature of the Lc to Lα phase. Thereafter, the system DEPE/ISP will progress by increasing the nonlamellar-forming propensity and reaching a single HII phase at high temperature. The cooling scan followed a similar structural path, except that the system went into a stable gel phase Lβ with a repeat distance, dLβ=6.5 nm, in co-existence with a HII phase. The formation of ISP microdomains in model PE membranes substantiates the importance of the isoprenyl group in the binding of isoprenylated proteins to membranes and in lipid–lipid interactions through modulation of the membrane structure.
Journal of Lipid Research | 2010
Arnau Cordomí; Jesús Prades; Juan Frau; Oliver Vögler; Sérgio S. Funari; Juan J. Perez; Pablo V. Escribá; Francisca Barceló
An experimental and theoretical study on 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine (DEPE) membranes containing fatty acids (FAs) was performed by means of X-ray diffraction analysis and molecular dynamics (MD) simulations. The study was aimed at understanding the interactions of several structurally related FAs with biomembranes, which is necessary for further rational lipid drug design in membrane-lipid therapy. The main effect of FAs was to promote the formation of a HII phase, despite a stabilization of the coexisting Lα + HII phases. Derivatives of OA exhibited a specific density profile in the direction perpendicular to the bilayer that reflects differences in the relative localization of the carboxylate group within the polar region of the membrane as well as in the degree of membrane penetration of the FA acyl chain. Hydroxyl and methyl substituents at carbon-2 in the FA acyl chain were identified as effective modulators of the position of carboxylate group in the lipid bilayer. Our data highlight the specific potential of each FA in modulating the membrane structure properties.
Chemico-Biological Interactions | 2014
Azahara Fernández-Guizán; Sylvia Mansilla; Francisca Barceló; Carolina Vizcaíno; Luz-Elena Núñez; Francisco Morís; Segundo González; J. Portugal
DIG-MSK (demycarosyl-3D-β-D-digitoxosyl-mithramycin SK) is a recently isolated compound of the mithramycin family of antitumor antibiotics, which includes mithramycin A (MTA) and mithramycin SK (MSK). Here, we present evidence that the binding of DIG-MSK to DNA shares the general features of other mithramycins such as the preference for C/G-rich tracts, but there are some differences in the strength of binding and the DNA sequence preferentially recognized by DIG-MSK. We aimed at gaining further insights into the DIG-MSK mechanism of action by direct comparison with the effects of the parental MTA. Similar to MTA, MSK and DIG-MSK accumulated rapidly in A2780, IGROV1 and OVCAR3 human ovarian cancer cell lines, and DIG-MSK was a potent inhibitor of both basal and induced expression of an Sp1-driven luciferase vector. This inhibitory activity was confirmed for the endogenous Sp1 gene and a set of Sp-responsive genes, and compared to that of MTA and MSK. Furthermore, DIG-MSK was stronger than MTA as inhibitor of Sp3-driven transcription and endogenous Sp3 gene expression. Differences in the effects of MTA, MSK and DIG-MSK on gene expression may have a large influence on their biological activities.