Francisco Blanco-Vaca
Autonomous University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francisco Blanco-Vaca.
Diabetes, Obesity and Metabolism | 2008
Xavier Palomer; José-Miguel González-Clemente; Francisco Blanco-Vaca; Didac Mauricio
Vitamin D deficiency has been shown to alter insulin synthesis and secretion in both humans and animal models. It has been reported that vitamin D deficiency may predispose to glucose intolerance, altered insulin secretion and type 2 diabetes mellitus. Vitamin D replenishment improves glycaemia and insulin secretion in patients with type 2 diabetes with established hypovitaminosis D, thereby suggesting a role for vitamin D in the pathogenesis of type 2 diabetes mellitus. The presence of vitamin D receptors (VDR) and vitamin D–binding proteins (DBP) in pancreatic tissue and the relationship between certain allelic variations in the VDR and DBP genes with glucose tolerance and insulin secretion have further supported this hypothesis. The mechanism of action of vitamin D in type 2 diabetes is thought to be mediated not only through regulation of plasma calcium levels, which regulate insulin synthesis and secretion, but also through a direct action on pancreatic β‐cell function. Therefore, owing to its increasing relevance, this review focuses on the role of vitamin D in the pathogenesis of type 2 diabetes mellitus.
American Journal of Human Genetics | 2000
Juan Carlos Souto; Laura Almasy; Montserrat Borrell; Francisco Blanco-Vaca; José Mateo; José Manuel Soria; Inma Coll; Rosa Felices; William H. Stone; Jordi Fontcuberta; John Blangero
Although there are a number of well-characterized genetic defects that lead to increased risk of thrombosis, little information is available on the relative importance of genetic factors in thrombosis risk in the general population. We performed a family-based study of the genetics of thrombosis in the Spanish population to assess the heritability of thrombosis and to identify the joint actions of genes on thrombosis risk and related quantitative hemostasis phenotypes. We examined 398 individuals in 21 extended pedigrees. Twelve pedigrees were ascertained through a proband with idiopathic thrombosis, and the remaining pedigrees were randomly ascertained. The heritability of thrombosis liability and the genetic correlations between thrombosis and each of the quantitative risk factors were estimated by means of a novel variance component method that used a multivariate threshold model. More than 60% of the variation in susceptibility to common thrombosis is attributable to genetic factors. Several quantitative risk factors exhibited significant genetic correlations with thrombosis, indicating that some of the genes that influence quantitative variation in these physiological correlates also influence the risk of thrombosis. Traits that exhibited significant genetic correlations with thrombosis included levels of several coagulation factors (factors VII, VIII, IX, XI, XII, and von Willebrand), tissue plasminogen activator, homocysteine, and the activated protein C ratio. This is the first study that quantifies the genetic component of susceptibility to common thrombosis. The high heritability of thrombosis risk and the significant genetic correlations between thrombosis and related risk factors suggest that the exploitation of correlated quantitative phenotypes will aid the search for susceptibility genes.
Nutrition Journal | 2004
Joan Carles Escolà-Gil; Laura Calpe-Berdiel; Vicent Ribas; Francisco Blanco-Vaca
BackgroundAlthough the consumption of wine in particular has been associated with a lower risk of atherothrombotic cardiovascular disease, systematic reviews differ as to the relative protective effect of beer, wine and spirits. Two previous studies showed that red wine reduces fatty streak formation (early atherosclerosis) but not mature atherosclerosis in apolipoprotein (apo) E-deficient (apoE-/-) mice.Aim of the studyTo determine whether a moderate beer intake would affect early and mature atherosclerotic lesion formation using control C57BL/6 and apoE-/- mice, respectively, as models.MethodsControl C57BL/6 and apoE-/- mice were randomized to receive either water, ethanol, mild beer, dark beer or ethanol-free beer. The level of beer was designed to approximate the alcohol intake currently believed to be beneficial in reducing human vascular risk. Control C57BL/6 mice were fed a Western diet for 24 weeks, and apoE-/- mice a chow diet for 12 weeks. At the end of the trial period, mice were euthanized and atherosclerotic lesions quantified. Plasma lipid concentrations were also measured.ResultsThe amount of atherosclerosis and average number of lesions in the proximal aortic region did not differ among groups in control C57BL/6 mice (p = 0.32 and p = 0.29, respectively) and apoE-/- mice (p = 0.19 and p = 0.59, respectively). No consistent differences were observed in plasma lipid and lipoprotein concentrations among water, ethanol and beer groups.ConclusionsModerate beer consumption does not change the development of early or mature atherosclerosis in mice. Our findings do not support the hypothesis of an anti-atherogenic effect of beer. Other potential protective actions of moderate beer consumption such as plaque stabilization, a reduction in plaque intrinsic thrombogenicity, or a reduction in the systemic propensity to thrombosis, remain to be studied.
Atherosclerosis | 2009
Laura Calpe-Berdiel; Joan Carles Escolà-Gil; Francisco Blanco-Vaca
Plant sterols and stanols (phytosterols/phytostanols) are known to reduce serum low-density lipoprotein (LDL)-cholesterol level, and food products containing these plant compounds are widely used as a therapeutic dietary option to reduce plasma cholesterol and atherosclerotic risk. The cholesterol-lowering action of phytosterols/phytostanols is thought to occur, at least in part, through competition with dietary and biliary cholesterol for intestinal absorption in mixed micelles. However, recent evidence suggests that phytosterols/phytostanols may regulate proteins implicated in cholesterol metabolism both in enterocytes and hepatocytes. Important advances in the understanding of intestinal sterol absorption have provided potential molecular targets of phytosterols. An increased activity of ATP-binding cassette transporter A1 (ABCA1) and ABCG5/G8 heterodimer has been proposed as a mechanism underlying the hypocholesterolaemic effect of phytosterols. Conclusive studies using ABCA1 and ABCG5/G8-deficient mice have demonstrated that the phytosterol-mediated inhibition of intestinal cholesterol absorption is independent of these ATP-binding cassette (ABC) transporters. Other reports have proposed a phytosterol/phytostanol action on cholesterol esterification and lipoprotein assembly, cholesterol synthesis and apolipoprotein (apo) B100-containing lipoprotein removal. The accumulation of phytosterols in ABCG5/G8-deficient mice, which develop features of human sitosterolaemia, disrupts cholesterol homeostasis by affecting sterol regulatory element-binding protein (SREBP)-2 processing and liver X receptor (LXR) regulatory pathways. This article reviews the progress to date in studying these effects of phytosterols/phytostanols and the molecular mechanisms involved.
Diabetologia | 1998
Ana Chico; Antonio Pérez; A. Córdoba; R. Arcelús; Gemma Carreras; A. de Leiva; Francesc González-Sastre; Francisco Blanco-Vaca
Summary The high risk of cardiovascular disease in patients with diabetes mellitus, particularly in those with nephropathy, is not completely explained by classical risk factors. A high plasma homocysteine concentration is an independent risk factor for cardiovascular disease but information on its association with diabetes is limited. Fasting homocysteine concentrations were measured in the plasma of 165 diabetic patients (75 with insulin-dependent [IDDM]; 90 with non-insulin-dependent diabetes [NIDDM]) and 56 non-diabetic control subjects. Other measurements included the prevalence of diabetic complications, glycaemic control, lipid and lipoprotein levels, vitamin status and renal function tests. Patients with NIDDM had higher homocysteine levels than control subjects, whereas IDDM patients did not (9.2 ± 4.5 vs 7.7 ± 2 μmol/l, p < 0.01; and 7.0 ± 3 vs 7.4 ± 2 μmol/l, NS). Univariate correlations and multiple regression analysis showed albumin excretion rate to be the parameter with the strongest independent association with homocysteine. Patients with both types of diabetes and nephropathy had higher plasma homocysteine concentrations than those without nephropathy. Increases of homocysteine in plasma were related to increases in the severity of the nephropathy. Fasting hyperhomocysteinaemia was considered as the mean of the plasma homocysteine for all control subjects (7.5 ± 2.1 μmol/l) + 2 SD (cut-off =11.7 μmol/l). Nephropathy was present in 80 % of diabetic patients with fasting hyperhomocysteinaemia. In conclusion, increases in fasting homocysteine in diabetic patients are associated with increased albumin excretion rate, especially in those with NIDDM, thus providing a potential new link between microalbuminuria, diabetic nephropathy and cardiovascular disease. [Diabetologia (1998) 41: 684–693]
American Journal of Human Genetics | 2005
Juan Carlos Souto; Francisco Blanco-Vaca; José Manuel Soria; Alfonso Buil; Laura Almasy; Jordi Ordóñez-Llanos; Jesús M. Martín-Campos; Mark Lathrop; William Stone; John Blangero; Jordi Fontcuberta
Homocysteine (Hcy) plasma level is an independent risk marker for venous thrombosis, myocardial infarction, stroke, congestive heart failure, osteoporotic fractures, and Alzheimer disease. Hcy levels are determined by the interaction of genetic and environmental factors. The genetic basis is still poorly understood, since only the MTHFR 677 C-->T polymorphism has been consistently associated with plasma Hcy levels. We conducted a genomewide linkage scan for genes affecting variation in plasma Hcy levels in 398 subjects from 21 extended Spanish families. A variance-components linkage method was used to analyze the data. The strongest linkage signal (LOD score of 3.01; genomewide P = .035) was found on chromosome 11q23, near marker D11S908, where a candidate gene involved in the metabolism of Hcy (the nicotinamide N-methyltransferase gene [NNMT]) is mapped. Haplotype analyses of 10 single-nucleotide polymorphisms within this gene found one haplotype associated with plasma Hcy levels (P = .0003). Our results, to our knowledge, represent the first genomic scan for quantitative variation in Hcy plasma levels. They strongly suggest that the NNMT gene could be a major genetic determinant of plasma Hcy levels in Spanish families. Since this gene encodes an enzyme involved in Hcy synthesis, this finding would be consistent with known biochemical pathways. These data could be relevant in determining the relationships between Hcy level, cardiovascular disease, osteoporosis, and Alzheimer disease.
Circulation Research | 2004
Vicent Ribas; José Luis Sánchez-Quesada; Rosa Antón; Mercedes Camacho; Josep Julve; Joan Carles Escolà-Gil; Luis Vila; Jordi Ordóñez-Llanos; Francisco Blanco-Vaca
Apolipoprotein A-II (apoA-II), the second major high-density lipoprotein (HDL) apolipoprotein, has been linked to familial combined hyperlipidemia. Human apoA-II transgenic mice constitute an animal model for this proatherogenic disease. We studied the ability of human apoA-II transgenic mice HDL to protect against oxidative modification of apoB-containing lipoproteins. When challenged with an atherogenic diet, antigens related to low-density lipoprotein (LDL) oxidation were markedly increased in the aorta of 11.1 transgenic mice (high human apoA-II expressor). HDL from control mice and 11.1 transgenic mice were coincubated with autologous very LDL (VLDL) or LDL, or with human LDL under oxidative conditions. The degree of oxidative modification of apoB lipoproteins was then evaluated by measuring relative electrophoretic mobility, dichlorofluorescein fluorescence, 9- and 13-hydroxyoctadecadienoic acid content, and conjugated diene kinetics. In all these different approaches, and in contrast to control mice, HDL from 11.1 transgenic mice failed to protect LDL from oxidative modification. A decreased content of apoA-I, paraoxonase (PON1), and platelet-activated factor acetyl-hydrolase activities was found in HDL of 11.1 transgenic mice. Liver gene expression of these HDL-associated proteins did not differ from that of control mice. In contrast, incubation of isolated human apoA-II with control mouse plasma at 37°C decreased PON1 activity and displaced the enzyme from HDL. Thus, overexpression of human apoA-II in mice impairs the ability of HDL to protect apoB-containing lipoproteins from oxidation. Further, the displacement of PON1 by apoA-II could explain in part why PON1 is mostly found in HDL particles with apoA-I and without apoA-II, as well as the poor antiatherogenic properties of apoA-II–rich HDL.
Circulation | 2003
Sònia Benítez; José Luis Sánchez-Quesada; Vicent Ribas; Oscar Jorba; Francisco Blanco-Vaca; Francesc González-Sastre; Jordi Ordóñez-Llanos
Background Electronegative LDL [LDL(−)], a modified subfraction of LDL present in plasma, induces the release of interleukin‐8 and monocyte chemotactic protein‐1 from cultured endothelial cells. Methods and Results We demonstrate that platelet‐activating factor acetylhydrolase (PAF‐AH) is mainly associated with LDL(−). LDL(−) had 5‐fold higher PAF‐AH activity than the nonelectronegative LDL subfraction [LDL(+)] in both normolipemic and familial hypercholesterolemic subjects. Western blot analysis after SDS‐PAGE confirmed these results, because a single band of 44 kDa corresponding to PAF‐AH appeared in LDL(−) but not in LDL(+). Nondenaturing polyacrylamide gradient gel electrophoresis demonstrated that PAF‐AH was bound to LDL(−) regardless of LDL size. In accordance with the above findings, nonesterified fatty acids, a cleavage product of PAF‐AH, were increased in LDL(−) compared with LDL(+). Conclusions The high PAF‐AH activity observed in LDL(−) could be related to the proinflammatory activity of these lipoproteins toward cultured endothelial cells. (Circulation. 2003;108:92‐96.)
American Journal of Cardiology | 1999
José Luis Sánchez-Quesada; Carles Otal-Entraigas; Miquel Franco; Oscar Jorba; Francesc González-Sastre; Francisco Blanco-Vaca; Jordi Ordóñez-Llanos
Most described modifications of low-density lipoprotein (LDL) cholesterol share an increase in its negative electric charge; in fact, an electronegative form of LDL can be identified and isolated from plasma. Although the exact nature of the chemical modification of electronegative LDL is still controversial, its toxicity on endothelial cells has been demonstrated. Statins have protective effects against cardiovascular disease that are independent of their lipid-lowering action and which could be due, at least in part, to the prevention of LDL modification. We evaluated the effect of 6 months of simvastatin therapy (40 mg/day) on electronegative LDL proportion and LDL susceptibility to in vitro induced oxidation in 21 patients with heterozygous familial hypercholesterolemia (FH). Eleven normolipemic subjects were analyzed as a control group. Total cholesterol as well as LDL and very low density lipoprotein cholesterol, triglycerides, and apoprotein B decreased 30% after the first month of therapy, with no further decreases thereafter. LDL susceptibility to oxidation was similar in FH patients and controls and did not change throughout the treatment. Electronegative LDL proportion was 35.1 +/- 9.9% in FH patients and 9.1 +/- 2.4% in control subjects (p <0.0001) but, in contrast to total LDL cholesterol and the rest of lipid parameters, it decreased to 28.6 +/- 9.1% in the third month and to 21.2 +/- 7.7% in the sixth month of therapy. The decrease in these cytotoxic particles may be a relevant mechanism by which simvastatin protects against cardiovascular disease.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2005
Noemi Rotllan; Vicent Ribas; Laura Calpe-Berdiel; Jesús M. Martín-Campos; Francisco Blanco-Vaca; Joan Carles Escolà-Gil
BACKGROUND Overexpression of human apolipoprotein (apo) A-II in transgenic mice induces high-density lipoprotein (HDL) deficiency, and increased atherosclerosis susceptibility only when fed an atherogenic diet. This may, in part, be caused by impairment in reverse cholesterol transport (RCT). METHODS AND RESULTS [3H]cholesterol-labeled macrophages were injected intraperitoneally into mice maintained on a chow diet or an atherogenic diet. Plasma [3H]cholesterol did not differ from human apoA-II transgenic and control mice at 24 or 48 hours after the label injection. On the chow diet, human apoA-II transgenic mice presented increased [3H]cholesterol in liver (1.3-fold) and feces (6-fold) compared with control mice (P<0.05). The magnitude of macrophage-specific RCT did not differ between transgenic and control mice fed the atherogenic diet. CONCLUSIONS Human apoA-II maintains effective RCT from macrophages to feces in vivo despite an HDL deficiency. These findings suggest that the increased atherosclerotic lesions observed in apoA-II transgenic mice fed an atherogenic diet are not caused by impairment in macrophage-specific RCT.