Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José Luis Sánchez-Quesada is active.

Publication


Featured researches published by José Luis Sánchez-Quesada.


Atherosclerosis | 2003

Response of oxidative stress biomarkers to a 16-week aerobic physical activity program, and to acute physical activity, in healthy young men and women.

Roberto Elosua; Lluis Molina; Montserrat Fitó; A. Arquer; José Luis Sánchez-Quesada; Maria Isabel Covas; Jordi Ordóñez-Llanos; Jaume Marrugat

Physical activity (PA) is associated with a reduced risk of coronary heart disease, and may favorably modify the antioxidant-prooxidant balance. This study assessed the effects of aerobic PA training on antioxidant enzyme activity, oxidized LDL concentration, and LDL resistance to oxidation, as well as the effect of acute PA on antioxidant enzyme activity before and after the training period. Seventeen sedentary healthy young men and women were recruited for 16 weeks of training. The activity of superoxide dismutase in erythrocytes (E-SOD), glutathione peroxidase in whole blood (GSH-Px), and glutathione reductase in plasma (P-GR), and the oxidized LDL concentration and LDL composition, diameter, and resistance to oxidation were determined before and after training. Shortly before and after this training period they also performed a bout of aerobic PA for 30 min. The antioxidant enzyme activity was also determined at 0 min, 30 min, 60 min, 120 min, and 24 h after both bouts of PA. Training induces an increase in GSH-Px (27.7%), P-GR (17.6%), and LDL resistance to oxidation, and a decrease in oxidized LDL (-15.9%). After the bout of PA, an increase in E-SOD and GSH-Px was observed at 0 min, with a posterior decrease in enzyme activity until 30-60 min, and a tendency to recover the basal values at 120 min and 24 h. Training did not modify this global response pattern. Regular PA increases endogenous antioxidant activity and LDL resistance to oxidation, and decreases oxidized LDL concentration; 30 min of aerobic PA decreases P-GR and B-GSH-Px activity in the first 30-60 min with a posterior recovery.


Current Opinion in Lipidology | 2004

Electronegative low-density lipoprotein

José Luis Sánchez-Quesada; Sònia Benítez; Jordi Ordóñez-Llanos

Purpose of review The occurrence in blood of an electronegatively charged LDL was described in 1988. During the 1990s reports studying electronegative LDL (LDL(-)) were scant and its atherogenic role controversial. Nevertheless, recent reports have provided new evidence on a putative atherogenic role of LDL(-). This review focuses on and discusses these new findings. Recent findings In recent years, LDL(-) has been found to be involved in several atherogenic features through its action on cultured endothelial cells. LDL(-) induces the production of chemokines, such as IL-8 and monocyte chemotactic protein 1, and increases tumor necrosis factor-α-induced production of vascular cell adhesion molecule 1, with these molecules being involved in early phases of leukocyte recruitment. LDL(-) from familial hypercholesterolemic patients also decreases DNA synthesis and intracellular fibroblast growth factor 2 production, which may contribute to impaired angiogenesis and increased apoptosis. In addition, the preferential association of platelet-activating factor acetylhydrolase with LDL(-) has been reported, suggesting a proinflammatory role of this enzyme in LDL(-). Summary Recent findings suggest that LDL(-) could contribute to atherogenesis via several mechanisms, including proinflammatory, proapoptotic and antiangiogenesis properties. Further studies are required to define the role of LDL(-) in atherogenesis more precisely and to clarify mechanisms involved in endothelial cell activation.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2000

Electronegative LDL From Normolipemic Subjects Induces IL-8 and Monocyte Chemotactic Protein Secretion by Human Endothelial Cells

Conxita de Castellarnau; José Luis Sánchez-Quesada; Sònia Benítez; Roser Rosa; Luis Caveda; Luis M. Vilá; Jordi Ordóñez-Llanos

The presence in plasma of an electronegative LDL subfraction [LDL(−)] cytotoxic for endothelial cells (ECs) has been reported. We studied the effect of LDL(−) on the release by ECs of molecules implicated in leukocyte recruitment [interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1)] and in the plasminogen activator inhibitor-1 (PAI-1). LDL(−), isolated by anion-exchange chromatography, differed from nonelectronegative LDL [LDL(+)] in its higher triglyceride, nonesterified fatty acid, apoprotein E and apoprotein C-III, and sialic acid contents. No evidence of extensive oxidation was found in LDL(−); its antioxidant and thiobarbituric acid–reactive substances contents were similar to those of LDL(+). However, conjugated dienes were increased in LDL(−), which suggests that mild oxidation might affect these particles. LDL(−) increased, in a concentration-dependent manner, the release of IL-8 and MCP-1 by ECs and was a stronger inductor of both chemokines than oxidized LDL (oxLDL) or LDL(+). PAI-1 release increased slightly in ECs incubated with both LDL(−) and oxLDL but not with LDL(+). However, no cytotoxic effects of LDL(−) were observed on ECs. Actinomycin D inhibited the release of IL-8 and MCP-1 induced by LDL(−) and oxLDL by up to 80%, indicating that their production is mediated by protein synthesis. Incubation of ECs with N-acetyl cysteine inhibited production of IL-8 and MCP-1 induced by LDL(−) and oxLDL by >50%. The free radical scavenger butylated hydroxytoluene slightly inhibited the effect of oxLDL but did not modify the effect of LDL(−). An antagonist (BN-50730) of the platelet-activating factor receptor inhibited production of both chemokines by LDL(−) and oxLDL in a concentration-dependent manner. Our results indicate that LDL(−) shows proinflammatory activity on ECs and may contribute to early atherosclerotic events.


Atherosclerosis | 2003

Electronegative LDL of FH subjects: chemical characterization and induction of chemokine release from human endothelial cells.

José Luis Sánchez-Quesada; Mercedes Camacho; Rosa Antón; Sònia Benítez; Lluis Vila; Jordi Ordóñez-Llanos

Electronegative LDL (LDL(-)) constitutes a plasma subfraction of LDL with proinflammatory properties. Its proportion is increased in familial hypercholesterolemia (FH); however, the characteristics of LDL(-) isolated from FH subjects have not been previously studied. In this work, the composition, oxidative status, and inflammatory capacity on endothelial cells of LDL(-) from FH and normolipemic (NL) subjects were evaluated. LDL(-) from FH was relatively enriched in esterified and free cholesterol and triglyceride, and had lower apoB and phospholipid content compared with the non-electronegative fraction (LDL(+)). LDL(-) also contained increased amounts of apoE, apoC-III, sialic acid, and non-esterified fatty acids (NEFAs). The same was observed in NL subjects, except that esterified cholesterol and phospholipid were similar in LDL(-) and LDL(+). No difference was observed between the two fractions concerning malondialdehyde, fatty acid hydroxides, and antioxidants, thereby indicating the absence of increased oxidation of LDL(-) compared with LDL(+). When LDL(-) (100 mg/l) from NL and FH subjects was incubated for 24 h with human umbilical vein endothelial cells (HUVECs), interleukin 8 (IL-8) and monocyte chemotactic protein 1 (MCP-1) increased twofold in the culture medium compared with LDL(+). Vascular cell adhesion molecule 1 (VCAM-1) expression was not increased by LDL(-). Our data indicate that LDL(-) from FH or NL subjects shows no evidence of increased oxidative modification compared to LDL(+); however, LDL(-) induces twofold the release of chemokines by endothelial cells. This effect, which may contribute to leukocyte recruitment and promote atherogenesis, may be greater in FH subjects in which LDL(-) can be up to eightfold higher than in NL subjects.


Circulation Research | 2004

Human Apolipoprotein A-II Enrichment Displaces Paraoxonase From HDL and Impairs Its Antioxidant Properties: A New Mechanism Linking HDL Protein Composition and Antiatherogenic Potential

Vicent Ribas; José Luis Sánchez-Quesada; Rosa Antón; Mercedes Camacho; Josep Julve; Joan Carles Escolà-Gil; Luis Vila; Jordi Ordóñez-Llanos; Francisco Blanco-Vaca

Apolipoprotein A-II (apoA-II), the second major high-density lipoprotein (HDL) apolipoprotein, has been linked to familial combined hyperlipidemia. Human apoA-II transgenic mice constitute an animal model for this proatherogenic disease. We studied the ability of human apoA-II transgenic mice HDL to protect against oxidative modification of apoB-containing lipoproteins. When challenged with an atherogenic diet, antigens related to low-density lipoprotein (LDL) oxidation were markedly increased in the aorta of 11.1 transgenic mice (high human apoA-II expressor). HDL from control mice and 11.1 transgenic mice were coincubated with autologous very LDL (VLDL) or LDL, or with human LDL under oxidative conditions. The degree of oxidative modification of apoB lipoproteins was then evaluated by measuring relative electrophoretic mobility, dichlorofluorescein fluorescence, 9- and 13-hydroxyoctadecadienoic acid content, and conjugated diene kinetics. In all these different approaches, and in contrast to control mice, HDL from 11.1 transgenic mice failed to protect LDL from oxidative modification. A decreased content of apoA-I, paraoxonase (PON1), and platelet-activated factor acetyl-hydrolase activities was found in HDL of 11.1 transgenic mice. Liver gene expression of these HDL-associated proteins did not differ from that of control mice. In contrast, incubation of isolated human apoA-II with control mouse plasma at 37°C decreased PON1 activity and displaced the enzyme from HDL. Thus, overexpression of human apoA-II in mice impairs the ability of HDL to protect apoB-containing lipoproteins from oxidation. Further, the displacement of PON1 by apoA-II could explain in part why PON1 is mostly found in HDL particles with apoA-I and without apoA-II, as well as the poor antiatherogenic properties of apoA-II–rich HDL.


Circulation | 2003

Platelet-Activating Factor Acetylhydrolase Is Mainly Associated With Electronegative Low-Density Lipoprotein Subfraction

Sònia Benítez; José Luis Sánchez-Quesada; Vicent Ribas; Oscar Jorba; Francisco Blanco-Vaca; Francesc González-Sastre; Jordi Ordóñez-Llanos

Background Electronegative LDL [LDL(−)], a modified subfraction of LDL present in plasma, induces the release of interleukin‐8 and monocyte chemotactic protein‐1 from cultured endothelial cells. Methods and Results We demonstrate that platelet‐activating factor acetylhydrolase (PAF‐AH) is mainly associated with LDL(−). LDL(−) had 5‐fold higher PAF‐AH activity than the nonelectronegative LDL subfraction [LDL(+)] in both normolipemic and familial hypercholesterolemic subjects. Western blot analysis after SDS‐PAGE confirmed these results, because a single band of 44 kDa corresponding to PAF‐AH appeared in LDL(−) but not in LDL(+). Nondenaturing polyacrylamide gradient gel electrophoresis demonstrated that PAF‐AH was bound to LDL(−) regardless of LDL size. In accordance with the above findings, nonesterified fatty acids, a cleavage product of PAF‐AH, were increased in LDL(−) compared with LDL(+). Conclusions The high PAF‐AH activity observed in LDL(−) could be related to the proinflammatory activity of these lipoproteins toward cultured endothelial cells. (Circulation. 2003;108:92‐96.)


Atherosclerosis | 1995

Increase of LDL susceptibility to oxidation occurring after intense, long duration aerobic exercise

José Luis Sánchez-Quesada; R. Homs-Serradesanferm; J. Serrat-Serrat; J.R. Serra-Grima; Francesc González-Sastre; Jordi Ordóñez-Llanos

The effect of heavy, long duration aerobic exercise on low density lipoprotein (LDL) susceptibility to oxidation and on distribution of LDL subfractions was studied. Six well-trained runners, previously fasted, ran continuously for 4 h. Controlled intake of liquid and food was permitted during exercise. Total plasma and LDL triglyceride increased significantly. LDL susceptibility to oxidation, measured as conjugated dienes formation, was modified significantly (P < or = 0.05) after running (14% reduction in lag phase time, and 8% increase in maximal curve slope). The percentage of electronegative LDL form (named LDLB) also increased significantly (P < or = 0.05) after exercise both basally (from 7.3% to 11%) and after 2h of induced oxidation (from 40.6% to 52.3%). Neither LDL susceptibility to oxidation nor increase of LDLB was statistically associated with food consumed during the race or modifications of triglycerides suggesting that this effect was due to exercise rather than food-related. The pattern of LDL subfractions was type A in all athletes before and after running. The oxidative LDL changes, seen in exercise conditions similar to those of hard training or competition, demonstrated an unfavourable effect of very intense exercise on lipoprotein metabolism.


Atherosclerosis | 1997

LDL from aerobically-trained subjects shows higher resistance to oxidative modification than LDL from sedentary subjects

José Luis Sánchez-Quesada; H Ortega; A Payés-Romero; J. Serrat-Serrat; Francesc González-Sastre; Miguel A. Lasunción; Jordi Ordóñez-Llanos

We studied the effect of regular intense aerobic exercise on the LDL susceptibility to oxidation and the electronegative LDL-proportion (LDL(-)). A group of 38 well-trained athletes was compared to a group of 38 age-BMI-matched sedentary individuals. Athletes showed higher concentration of total cholesterol (athletes 5.08 +/- 0.70 versus controls 4.65 +/- 0.75 mmol/l, P = 0.0229) and HDL cholesterol (athletes 1.72 +/- 0.47 versus controls 1.46 +/- 0.39 mmol/l, P = 0.0068); total plasma triglyceride, LDL cholesterol and VLDL cholesterol did not differ between trained and untrained subjects. The susceptibility of LDL to oxidation, determined by conjugated dienes formation and expressed as lag phase, was lower in athletes than in sedentaries (trained subjects 47.0 +/- 5.6 versus sedentary subjects 41.9 +/- 5.0 min, P = 0.0002). LDL(-) was similar in both groups (athletes 10.32 +/- 4.70 versus controls 10.26 +/- 3.71%). The antioxidant content in total plasma and isolated LDL (alpha-tocopherol, retinol, lycopene, alpha-carotene and beta-carotene) was quantitated by HPLC in a subgroup of 32 athletes and 32 control subjects. Athletes showed higher amounts of alpha-tocopherol and retinol in plasma, but not in LDL. However, none of these antioxidants correlated with the lag phase time. Trained subjects showed lower prevalence of smoking. However, no differences were observed between smokers and non-smokers concerning lag phase. No significant difference between athletes and sedentaries concerning LDL density, or composition was observed. We conclude that LDL from trained subjects is more resistant to oxidative modification than LDL from sedentary subjects. This observation could not be attributed to conventional antioxidants as alpha-tocopherol and carotene content of LDL was unchanged in trained subjects. Thus, although none of the variables studied appear as a single predictor of the LDL susceptibility to oxidation, an additive effect of the antioxidant content, the presence of some undetermined co-antioxidant, HDL and/or smoking habits cannot be discarded as responsible for the increased resistance to oxidation of LDL in trained subjects.


American Journal of Cardiology | 1999

Effect of Simvastatin Treatment on the Electronegative Low-Density Lipoprotein Present in Patients With Heterozygous Familial Hypercholesterolemia

José Luis Sánchez-Quesada; Carles Otal-Entraigas; Miquel Franco; Oscar Jorba; Francesc González-Sastre; Francisco Blanco-Vaca; Jordi Ordóñez-Llanos

Most described modifications of low-density lipoprotein (LDL) cholesterol share an increase in its negative electric charge; in fact, an electronegative form of LDL can be identified and isolated from plasma. Although the exact nature of the chemical modification of electronegative LDL is still controversial, its toxicity on endothelial cells has been demonstrated. Statins have protective effects against cardiovascular disease that are independent of their lipid-lowering action and which could be due, at least in part, to the prevention of LDL modification. We evaluated the effect of 6 months of simvastatin therapy (40 mg/day) on electronegative LDL proportion and LDL susceptibility to in vitro induced oxidation in 21 patients with heterozygous familial hypercholesterolemia (FH). Eleven normolipemic subjects were analyzed as a control group. Total cholesterol as well as LDL and very low density lipoprotein cholesterol, triglycerides, and apoprotein B decreased 30% after the first month of therapy, with no further decreases thereafter. LDL susceptibility to oxidation was similar in FH patients and controls and did not change throughout the treatment. Electronegative LDL proportion was 35.1 +/- 9.9% in FH patients and 9.1 +/- 2.4% in control subjects (p <0.0001) but, in contrast to total LDL cholesterol and the rest of lipid parameters, it decreased to 28.6 +/- 9.1% in the third month and to 21.2 +/- 7.7% in the sixth month of therapy. The decrease in these cytotoxic particles may be a relevant mechanism by which simvastatin protects against cardiovascular disease.


Diabetologia | 1996

Electronegative low density lipoprotein subform is increased in patients with short-duration IDDM and is closely related to glycaemic control

José Luis Sánchez-Quesada; Antonio Pérez; J. Ordónmez-Llanos; Gemma Carreras; Amalia Payés; Francesc González-Sastre; A. de Leiva

Summary We evaluated the effect of improving glycaemic control with intensive insulin therapy on LDL susceptibility to oxidation, electronegative LDL proportion, and LDL subfraction phenotype in a group of 25 patients with short-duration insulin-dependent diabetes mellitus (IDDM); 25 matched healthy control subjects were also studied. LDL susceptibility to oxidation was measured by continuous monitoring of conjugated diene formation. Electronegative LDL was isolated by anion exchange chromatography, and quantified as percentage of total LDL. Six LDL subfractions were isolated by density gradient ultracentrifugation and phenotype A or B classified as the quotient (LDL1-LDL3)/(LDL4-LDL6). Compared to the control group, IDDM subjects with poor glycaemic control showed higher electronegative LDL (19.03 ± 10.09 vs 9.59 ± 2.98 %, p < 0.001), similar LDL subfraction phenotype and lower susceptibility to oxidation (lag phase 45.6 ± 8.8 vs 41.2 ± 4.7 min, p < 0.05). After three months of intensive insulin therapy, HbA1 c decreased from 10.88 ± 2.43 to 5.69 ± 1.54 % (p < 0.001), and electronegative LDL to 13.84 ± 5.15 % (p < 0.05). No changes in LDL susceptibility to oxidation or LDL subfraction phenotype were observed. Electronegative LDL appeared significantly correlated to HbA1 c and fructosamine (p < 0.01 and p < 0.001) only in poorly controlled IDDM patients. These findings suggest that high electronegative LDL in IDDM subjects is related to the degree of glycaemic control, and could therefore be due to LDL glycation rather than to LDL oxidation or changes in LDL subfraction phenotype. [Diabetologia (1996) 39: 1469–1476]

Collaboration


Dive into the José Luis Sánchez-Quesada's collaboration.

Top Co-Authors

Avatar

Jordi Ordóñez-Llanos

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Sònia Benítez

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Francisco Blanco-Vaca

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Antonio Pérez

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Cristina Bancells

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Francesc González-Sastre

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandra Villegas

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Ana M. Wägner

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge