Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francisco Dini-Andreote is active.

Publication


Featured researches published by Francisco Dini-Andreote.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession.

Francisco Dini-Andreote; James C. Stegen; Jan Dirk van Elsas; Joana Falcão Salles

Significance Across ecology, and particularly within microbial ecology, there is limited understanding of the mechanisms governing the relative influences of stochastic and deterministic processes. Filling this knowledge gap is a major challenge that requires the development of novel conceptual paradigms, experiments, and ecological models. Here we (i) present a conceptual model that couples the stochastic/deterministic balance to primary and secondary ecological succession, thereby integrating previously isolated conceptual domains; (ii) evaluate this model over 105 years of ecosystem development, revealing a systematic shift in the type and strength of ecological selection; and (iii) couple empirical data with a new simulation model to elucidate underlying mechanisms and characterize their scale dependency. The insights and conceptual framework provided here represent a nexus for cross-system integration. Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. Synthesizing previous work, we devised a conceptual model that links ecosystem development to alternative hypotheses related to shifts in ecological assembly processes. Conceptual model hypotheses were tested by coupling spatiotemporal data on soil bacterial communities with environmental conditions in a salt marsh chronosequence spanning 105 years of succession. Analyses within successional stages showed community composition to be initially governed by stochasticity, but as succession proceeded, there was a progressive increase in deterministic selection correlated with increasing sodium concentration. Analyses of community turnover among successional stages—which provide a larger spatiotemporal scale relative to within stage analyses—revealed that changes in the concentration of soil organic matter were the main predictor of the type and relative influence of determinism. Taken together, these results suggest scale-dependency in the mechanisms underlying selection. To better understand mechanisms governing these patterns, we developed an ecological simulation model that revealed how changes in selective environments cause shifts in the stochastic/deterministic balance. Finally, we propose an extended—and experimentally testable—conceptual model integrating ecological assembly processes with primary and secondary succession. This framework provides a priori hypotheses for future experiments, thereby facilitating a systematic approach to understand assembly and succession in microbial communities across ecosystems.


PLOS ONE | 2012

The microbiome of Brazilian mangrove sediments as revealed by metagenomics

Fernando Dini Andreote; Diego Javier Jiménez; Diego Chaves; Armando Cavalcante Franco Dias; Danice Mazzer Luvizotto; Francisco Dini-Andreote; Cristiane Cipola Fasanella; Maryeimy Varon Lopez; Sandra Baena; Rodrigo Gouvêa Taketani; Itamar Soares de Melo

Here we embark in a deep metagenomic survey that revealed the taxonomic and potential metabolic pathways aspects of mangrove sediment microbiology. The extraction of DNA from sediment samples and the direct application of pyrosequencing resulted in approximately 215 Mb of data from four distinct mangrove areas (BrMgv01 to 04) in Brazil. The taxonomic approaches applied revealed the dominance of Deltaproteobacteria and Gammaproteobacteria in the samples. Paired statistical analysis showed higher proportions of specific taxonomic groups in each dataset. The metabolic reconstruction indicated the possible occurrence of processes modulated by the prevailing conditions found in mangrove sediments. In terms of carbon cycling, the sequences indicated the prevalence of genes involved in the metabolism of methane, formaldehyde, and carbon dioxide. With respect to the nitrogen cycle, evidence for sequences associated with dissimilatory reduction of nitrate, nitrogen immobilization, and denitrification was detected. Sequences related to the production of adenylsulfate, sulfite, and H2S were relevant to the sulphur cycle. These data indicate that the microbial core involved in methane, nitrogen, and sulphur metabolism consists mainly of Burkholderiaceae, Planctomycetaceae, Rhodobacteraceae, and Desulfobacteraceae. Comparison of our data to datasets from soil and sea samples resulted in the allotment of the mangrove sediments between those samples. The results of this study add valuable data about the composition of microbial communities in mangroves and also shed light on possible transformations promoted by microbial organisms in mangrove sediments.


The ISME Journal | 2014

Dynamics of bacterial community succession in a salt marsh chronosequence: evidences for temporal niche partitioning

Francisco Dini-Andreote; Michele de Cassia Pereira e Silva; Xavier Triadó-Margarit; Emilio O. Casamayor; Jan Dirk van Elsas; Joana Falcão Salles

The mechanisms underlying community assembly and promoting temporal succession are often overlooked in microbial ecology. Here, we studied an undisturbed salt marsh chronosequence, spanning over a century of ecosystem development, to understand bacterial succession in soil. We used 16S rRNA gene-based quantitative PCR to determine bacterial abundance and multitag 454 pyrosequencing for community composition and diversity analyses. Despite 10-fold lower 16S rRNA gene abundances, the initial stages of soil development held higher phylogenetic diversities than the soil at late succession. Temporal variations in phylogenetic β-diversity were greater at initial stages of soil development, possibly as a result of the great dynamism imposed by the daily influence of the tide, promoting high immigration rates. Allogenic succession of bacterial communities was mostly driven by shifts in the soil physical structure, as well as variations in pH and salinity, which collectively explained 84.5% of the variation concerning community assemblage. The community assembly data for each successional stage were integrated into a network co-occurrence analysis, revealing higher complexity at initial stages, coinciding with great dynamism in turnover and environmental variability. Contrary to a spatial niche-based perspective of bacterial community assembly, we suggest temporal niche partitioning as the dominant mechanism of assembly (promoting more phylotype co-occurrence) in the initial stages of succession, where continuous environmental change results in the existence of multiple niches over short periods of time.


The ISME Journal | 2014

Climate change affects key nitrogen-fixing bacterial populations on coral reefs

Henrique F. Santos; Flávia L. Carmo; Gustavo Adolpho Santos Duarte; Francisco Dini-Andreote; Clovis Barreira e Castro; Alexandre S. Rosado; Jan Dirk van Elsas; Raquel S. Peixoto

Coral reefs are at serious risk due to events associated with global climate change. Elevated ocean temperatures have unpredictable consequences for the ocean’s biogeochemical cycles. The nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation. This study investigated the effects of increased seawater temperature on bacteria able to fix nitrogen (diazotrophs) that live in association with the mussid coral Mussismilia harttii. Consistent increases in diazotroph abundances and diversities were found at increased temperatures. Moreover, gradual shifts in the dominance of particular diazotroph populations occurred as temperature increased, indicating a potential future scenario of climate change. The temperature-sensitive diazotrophs may provide useful bioindicators of the effects of thermal stress on coral reef health, allowing the impact of thermal anomalies to be monitored. In addition, our findings support the development of research on different strategies to improve the fitness of corals during events of thermal stress, such as augmentation with specific diazotrophs.


Biotechnology for Biofuels | 2014

Metataxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia.

Diego Javier Jiménez; Francisco Dini-Andreote; Jan Dirk van Elsas

BackgroundMixed microbial cultures, in which bacteria and fungi interact, have been proposed as an efficient way to deconstruct plant waste. The characterization of specific microbial consortia could be the starting point for novel biotechnological applications related to the efficient conversion of lignocellulose to cello-oligosaccharides, plastics and/or biofuels. Here, the diversity, composition and predicted functional profiles of novel bacterial-fungal consortia are reported, on the basis of replicated aerobic wheat straw enrichment cultures.ResultsIn order to set up biodegradative microcosms, microbial communities were retrieved from a forest soil and introduced into a mineral salt medium containing 1% of (un)treated wheat straw. Following each incubation step, sequential transfers were carried out using 1 to 1,000 dilutions. The microbial source next to three sequential batch cultures (transfers 1, 3 and 10) were analyzed by bacterial 16S rRNA gene and fungal ITS1 pyrosequencing. Faith’s phylogenetic diversity values became progressively smaller from the inoculum to the sequential batch cultures. Moreover, increases in the relative abundances of Enterobacteriales, Pseudomonadales, Flavobacteriales and Sphingobacteriales were noted along the enrichment process. Operational taxonomic units affiliated with Acinetobacter johnsonii, Pseudomonas putida and Sphingobacterium faecium were abundant and the underlying strains were successfully isolated. Interestingly, Klebsiella variicola (OTU1062) was found to dominate in both consortia, whereas K. variicola-affiliated strains retrieved from untreated wheat straw consortia showed endoglucanase/xylanase activities. Among the fungal players with high biotechnological relevance, we recovered members of the genera Penicillium, Acremonium, Coniochaeta and Trichosporon. Remarkably, the presence of peroxidases, alpha-L-fucosidases, beta-xylosidases, beta-mannases and beta-glucosidases, involved in lignocellulose degradation, was indicated by predictive bacterial metagenome reconstruction. Reassuringly, tests for specific (hemi)cellulolytic enzymatic activities, performed on the consortial secretomes, confirmed the presence of such gene functions.ConclusionIn an in-depth characterization of two wheat straw degrading microbial consortia, we revealed the enrichment and selection of specific bacterial and fungal taxa that were presumably involved in (hemi) cellulose degradation. Interestingly, the microbial community composition was strongly influenced by the wheat straw pretreatment. Finally, the functional bacterial-metagenome prediction and the evaluation of enzymatic activities (at the consortial secretomes) revealed the presence and enrichment of proteins involved in the deconstruction of plant biomass.


Applied and Environmental Microbiology | 2012

Abundance and genetic diversity of nifH gene sequences in anthropogenically affected Brazilian mangrove sediments

Armando Cavalcante Franco Dias; Michele de Cassia Pereira e Silva; Simone Raposo Cotta; Francisco Dini-Andreote; Fabio Lino Soares; Joana Falcão Salles; João Lúcio Azevedo; Jan Dirk van Elsas; Fernando Dini Andreote

ABSTRACT Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies.


PLOS ONE | 2013

Different selective effects on rhizosphere bacteria exerted by genetically modified versus conventional potato lines.

Armando Cavalcante Franco Dias; Francisco Dini-Andreote; S.E. Hannula; Fernando Dini Andreote; Michele de Cassia Pereira e Silva; Joana Falcão Salles; Wietse de Boer; Johannes A. van Veen; Jan Dirk van Elsas

Background In this study, we assessed the actively metabolizing bacteria in the rhizosphere of potato using two potato cultivars, i.e. the genetically-modified (GM) cultivar Modena (having tubers with altered starch content) and the near-isogenic non-GM cultivar Karnico. To achieve our aims, we pulse-labelled plants at EC90 stage with 13C-CO2 and analysed their rhizosphere microbial communities 24 h, 5 and 12 days following the pulse. In the analyses, phospholipid fatty acid/stable isotope probing (PLFA-SIP) as well as RNA-SIP followed by reverse transcription and PCR-DGGE and clone library analysis, were used to determine the bacterial groups that actively respond to the root-released 13C labelled carbonaceous compounds. Methodology/Principal findings The PLFA-SIP data revealed major roles of bacteria in the uptake of root-released 13C carbon, which grossly increased with time. Gram-negative bacteria, including members of the genera Pseudomonas and Burkholderia, were strong accumulators of the 13C-labeled compounds at the two cultivars, whereas Gram-positive bacteria were lesser responders. PCR-DGGE analysis of cDNA produced from the two cultivar types showed that these had selected different bacterial, alpha- and betaproteobacterial communities at all time points. Moreover, an effect of time was observed, indicating dynamism in the structure of the active bacterial communities. PCR-DGGE as well as clone library analyses revealed that the main bacterial responders at cultivar Karnico were taxonomically affiliated with the genus Pseudomonas, next to Gluconacetobacter and Paracoccus. Cultivar Modena mainly attracted Burkholderia, next to Moraxella-like (Moraxellaceae family) and Sphingomonas types. Conclusions/Significance Based on the use of Pseudomonas and Burkholderia as proxies for differentially-selected bacterial genera, we conclude that the selective forces exerted by potato cultivar Modena on the active bacterial populations differed from those exerted by cultivar Karnico.


Microbial Ecology | 2012

Bacterial genomes: habitat specificity and uncharted organisms.

Francisco Dini-Andreote; Fernando Dini Andreote; Welington Luiz Araújo; J. T. Trevors; Jan Dirk van Elsas

The capability and speed in generating genomic data have increased profoundly since the release of the draft human genome in 2000. Additionally, sequencing costs have continued to plummet as the next generation of highly efficient sequencing technologies (next-generation sequencing) became available and commercial facilities promote market competition. However, new challenges have emerged as researchers attempt to efficiently process the massive amounts of sequence data being generated. First, the described genome sequences are unequally distributed among the branches of bacterial life and, second, bacterial pan-genomes are often not considered when setting aims for sequencing projects. Here, we propose that scientists should be concerned with attaining an improved equal representation of most of the bacterial tree of life organisms, at the genomic level. Moreover, they should take into account the natural variation that is often observed within bacterial species and the role of the often changing surrounding environment and natural selection pressures, which is central to bacterial speciation and genome evolution. Not only will such efforts contribute to our overall understanding of the microbial diversity extant in ecosystems as well as the structuring of the extant genomes, but they will also facilitate the development of better methods for (meta)genome annotation.


Ecology and Evolution | 2014

Dynamics of bacterial and fungal communities associated with eggshells during incubation

St ephanie Grizard; Francisco Dini-Andreote; B. Irene Tieleman; Joana Falcão Salles

Microorganisms are closely associated with eggs and may play a determinant role in embryo survival. Yet, the majority of studies focusing on this association relied on culture-based methodology, eventually leading to a skewed assessment of microbial communities. By targeting the 16S rRNA gene and internal transcribed spacer (ITS) region, we, respectively, described bacterial and fungal communities on eggshells of the homing pigeon Columba livia. We explored their structure, abundance, and composition. Firstly, we showed that sampling technique affected the outcome of the results. While broadly used, the egg swabbing procedure led to a lower DNA extraction efficiency and provided different profiles of bacterial communities than those based on crushed eggshell pieces. Secondly, we observed shifts in bacterial and fungal communities during incubation. At late incubation, bacterial communities showed a reduction in diversity, while their abundance increased, possibly due to the competitive advantage of some species. When compared to their bacterial counterparts, fungal communities also decreased in diversity at late incubation. In that case, however, the decline was associated with a diminution of their overall abundance. Conclusively, our results showed that although incubation might inhibit microbial growth when compared to unincubated eggs, we observed the selective growth of specific bacterial species during incubation. Moreover, we showed that fungi are a substantial component of the microbial communities associated with eggshells and require further investigations in avian ecology. Identifying the functional roles of these microorganisms is likely to provide news insights into the evolutionary strategies that control embryo survival. We aimed to describe the dynamics of bacterial and fungal communities on homing pigeon eggshell surfaces. We investigated these communities at early and late incubation stages.


Plant and Soil | 2010

Bacterial soil community in a Brazilian sugarcane field

Francisco Dini-Andreote; Fernando Dini Andreote; Rodrigo Costa; Rodrigo Gouvêa Taketani; Jan Dirk van Elsas; Welington Luiz Araújo

The assessment of bacterial communities in soil gives insight into microbial behavior under prevailing environmental conditions. In this context, we assessed the composition of soil bacterial communities in a Brazilian sugarcane experimental field. The experimental design encompassed plots containing common sugarcane (variety SP80-1842) and its transgenic form (IMI-1 — imazapyr herbicide resistant). Plants were grown in such field plots in a completely randomized design with three treatments, which addressed the factors transgene and imazapyr herbicide application. Soil samples were taken at three developmental stages during plant growth and analyzed using 16S ribosomal RNA (rRNA)-based PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and clone libraries. PCR-DGGE fingerprints obtained for the total bacterial community and specific bacterial groups — Actinobacteria, Alphaproteobacteria and Betaproteobacteria — revealed that the structure of these assemblages did not differ over time and among treatments. Nevertheless, slight differences among 16S rRNA gene clone libraries constructed from each treatment could be observed at particular cut-off levels. Altogether, the libraries encompassed a total of eleven bacterial phyla and the candidate divisions TM7 and OP10. Clone sequences affiliated with the Proteobacteria, Actinobacteria, Firmicutes and Acidobacteria were, in this order, most abundant. Accurate phylogenetic analyses were performed for the phyla Acidobacteria and Verrucomicrobia, revealing the structures of these groups, which are still poorly understood as to their importance for soil functioning and sustainability under agricultural practices.

Collaboration


Dive into the Francisco Dini-Andreote's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rodrigo Gouvêa Taketani

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Itamar Soares de Melo

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge