Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joana Falcão Salles is active.

Publication


Featured researches published by Joana Falcão Salles.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Microbial diversity determines the invasion of soil by a bacterial pathogen

Jan Dirk van Elsas; Mario Chiurazzi; Cyrus A. Mallon; Dana Elhottovā; Václav Krištůfek; Joana Falcão Salles

Natural ecosystems show variable resistance to invasion by alien species, and this resistance can relate to the species diversity in the system. In soil, microorganisms are key components that determine life support functions, but the functional redundancy in the microbiota of most soils has long been thought to overwhelm microbial diversity–function relationships. We here show an inverse relationship between soil microbial diversity and survival of the invading species Escherichia coli O157:H7, assessed by using the marked derivative strain T. The invaders fate in soil was determined in the presence of (i) differentially constructed culturable bacterial communities, and (ii) microbial communities established using a dilution-to-extinction approach. Both approaches revealed a negative correlation between the diversity of the soil microbiota and survival of the invader. The relationship could be explained by a decrease in the competitive ability of the invader in species-rich vs. species-poor bacterial communities, reflected in the amount of resources used and the rate of their consumption. Soil microbial diversity is a key factor that controls the extent to which bacterial invaders can establish.


Biodegradation | 2002

Effects of agronomical measures on the microbial diversity of soils as related to the suppression of soil-borne plant pathogens.

Jan Dirk van Elsas; Paolina Garbeva; Joana Falcão Salles

The diversity of soil microbial communities can be key to the capacity of soils tosuppress soil-borne plant diseases. As agricultural practice, as well as directedagronomical measures, are known to be able to affect soil microbial diversity, it isplausible that the soil microflora can be geared towards a greater suppressivity ofsoil-borne diseases as a result of the selection of suitable soil management regimes.In the context of a programme aimed at investigating the microbial diversity of soilsunder different agricultural regimes, including permanent grassland versus arableland under agricultural rotation, we assessed how soil microbial diversity is affectedin relation to the suppression of the soil-borne potato pathogen Rhizoctoniasolani AG3. The diversity in the microbial communities over about a growingseason was described by using cultivation-based – plating on different media – and cultivation-independent – soil DNA-based PCR followed by denaturing gradient gel electrophoresis (DGGE) community fingerprinting – methods. The results showed great diversity in the soil microbiota at both the culturable and cultivation-independent detection levels. Using cultivation methods, various differences between treatments with respect to sizes of bacterial and fungal populations were detected, with highest population sizes generally found in rhizospheres. In addition, the evenness of eco-physiologically differing bacterial types was higher in grassland than in arable land under rotation. At the cultivation-independent level, clear differences in the diversities of several microbial groups between permanent grassland and arable land under rotation were apparent. Bio-assays that assessed the growth of R. solani AG3 hyphae through soil indicated a greater growth suppression in grassland than in arable land soils. Similarly, an experiment performed in the glasshouse showed clear differences in both microbial diversities and suppressiveness of R. solani growth in soil, depending on the presence of either maizeor oats as the crop. The significance of these findings for designing soil managementstrategies is discussed.


Applied and Environmental Microbiology | 2004

Multivariate analyses of Burkholderia species in soil: Effect of crop and land use history

Joana Falcão Salles; Johannes Antonius van Veen; Jan Dirk van Elsas

ABSTRACT The assessment of Burkholderia diversity in agricultural areas is important considering the potential use of this genus for agronomic and environmental applications. Therefore, the aim of this work was to ascertain how plant species and land use management drive the diversity of the genus Burkholderia. In a greenhouse experiment, different crops, i.e., maize, oat, barley, and grass, were planted in pots containing soils with different land use histories, i.e., maize monoculture, crop rotation, and permanent grassland, for three consecutive growth cycles. The diversity of Burkholderia spp. in the rhizosphere soil was assessed by genus-specific PCR-denaturing gradient gel electrophoresis (DGGE) and analyzed by canonical correspondence analysis (CCA). CCA ordination plots showed that previous land use was the main factor affecting the composition of the Burkholderia community. Although most variation in the Burkholderia community structure was observed between the permanent grassland and agricultural areas, differences between the crop rotation and maize monoculture groups were also observed. Plant species affected Burkholderia community structure to a lesser extent than did land use history. Similarities were observed between Burkholderia populations associated with maize and grass, on the one hand, and between those associated with barley and oat, on the other hand. Additionally, CCA ordination plots demonstrated that these two groups (maize/grass versus barley/oat) had a negative correlation. The identification of bands from the DGGE patterns demonstrated that the species correlated with the environmental variables were mainly affiliated with Burkholderia species that are commonly isolated from soil, in particular Burkholderia glathei, B. caledonica, B. hospita, and B. caribiensis.


PLOS ONE | 2011

Comparative Analysis of Bacterial Communities in a Potato Field as Determined by Pyrosequencing

Oezguel Inceoglu; Waleed Abu Al-Soud; Joana Falcão Salles; Alexander V. Semenov; Jan Dirk van Elsas

Background Plants selectively attract particular soil microorganisms, in particular consumers of root-excreted compounds. It is unclear to what extent cultivar type and/or growth stage affect this process. Methodology/Principal Findings DNA-based pyrosequencing was used to characterize the structure of bacterial communities in a field cropped with potato. The rhizospheres of six cultivars denoted Aveka, Aventra, Karnico, Modena, Premiere and Desiree, at three growth stages (young, flowering and senescence) were examined, in addition to corresponding bulk soils. Around 350,000 sequences were obtained (5,700 to 38,000 per sample). Across all samples, rank abundance distributions best fitted the power law model, which indicates a community composed of a few highly dominant species next to numerous rare species. Grouping of the sequences showed that members of the Actinobacteria, Alphaproteobacteria, next to as-yet-unclassified bacteria, dominated. Other groups that were consistently found, albeit at lower abundance, were Beta-, Gamma- and Deltaproteobacteria and Acidobacteria. Principal components analyses revealed that rhizosphere samples were significantly different from corresponding bulk soil in each growth stage. Furthermore, cultivar effects were found in the young plant stage, whereas these became insignificant in the flowering and senescence stages. Besides, an effect of time of season was observed for both rhizosphere and bulk soils. The analyzed rhizosphere samples of the potato cultivars were grouped into two groups, in accordance with the allocation of carbon to starch in their tubers, i.e. Aveka, Aventra and Karnico (high) versus Premiere and Desiree (low) and thus replicates per group were established. Conclusions Across all potato cultivars, the young plant stages revealed cultivar-dependent bacterial community structures, which disappeared in the flowering and senescence stages. Furthermore, Pseudomonas, Beta-, Alpha- and Deltaproteobacteria flourished under different ecological conditions than the Acidobacteria.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession.

Francisco Dini-Andreote; James C. Stegen; Jan Dirk van Elsas; Joana Falcão Salles

Significance Across ecology, and particularly within microbial ecology, there is limited understanding of the mechanisms governing the relative influences of stochastic and deterministic processes. Filling this knowledge gap is a major challenge that requires the development of novel conceptual paradigms, experiments, and ecological models. Here we (i) present a conceptual model that couples the stochastic/deterministic balance to primary and secondary ecological succession, thereby integrating previously isolated conceptual domains; (ii) evaluate this model over 105 years of ecosystem development, revealing a systematic shift in the type and strength of ecological selection; and (iii) couple empirical data with a new simulation model to elucidate underlying mechanisms and characterize their scale dependency. The insights and conceptual framework provided here represent a nexus for cross-system integration. Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. Synthesizing previous work, we devised a conceptual model that links ecosystem development to alternative hypotheses related to shifts in ecological assembly processes. Conceptual model hypotheses were tested by coupling spatiotemporal data on soil bacterial communities with environmental conditions in a salt marsh chronosequence spanning 105 years of succession. Analyses within successional stages showed community composition to be initially governed by stochasticity, but as succession proceeded, there was a progressive increase in deterministic selection correlated with increasing sodium concentration. Analyses of community turnover among successional stages—which provide a larger spatiotemporal scale relative to within stage analyses—revealed that changes in the concentration of soil organic matter were the main predictor of the type and relative influence of determinism. Taken together, these results suggest scale-dependency in the mechanisms underlying selection. To better understand mechanisms governing these patterns, we developed an ecological simulation model that revealed how changes in selective environments cause shifts in the stochastic/deterministic balance. Finally, we propose an extended—and experimentally testable—conceptual model integrating ecological assembly processes with primary and secondary succession. This framework provides a priori hypotheses for future experiments, thereby facilitating a systematic approach to understand assembly and succession in microbial communities across ecosystems.


Applied and Environmental Microbiology | 2002

Molecular method to assess the diversity of Burkholderia species in environmental samples

Joana Falcão Salles; Francisco Adriano De Souza; Jan Dirk van Elsas

ABSTRACT In spite of the importance of many members of the genus Burkholderia in the soil microbial community, no direct method to assess the diversity of this genus has been developed so far. The aim of this work was the development of soil DNA-based PCR-denaturing gradient gel electrophoresis (DGGE), a powerful tool for studying the diversity of microbial communities, for detection and analysis of the Burkholderia diversity in soil samples. Primers specific for the genus Burkholderia were developed based on the 16S rRNA gene sequence and were evaluated in PCRs performed with genomic DNAs from Burkholderia and non-Burkholderia species as the templates. The primer system used exhibited good specificity and sensitivity for the majority of established species of the genus Burkholderia. DGGE analyses of the PCR products obtained showed that there were sufficient differences in migration behavior to distinguish the majority of the 14 Burkholderia species tested. Sequence analysis of amplicons generated with soil DNA exclusively revealed sequences affiliated with sequences of Burkholderia species, demonstrating that the PCR-DGGE method is suitable for studying the diversity of this genus in natural settings. A PCR-DGGE analysis of the Burkholderia communities in two grassland plots revealed differences in diversity mainly between bulk and rhizosphere soil samples; the communities in the latter samples produced more complex patterns.


Applied and Environmental Microbiology | 2010

Effects of plant genotype and growth stage on the betaproteobacterial communities associated with different potato cultivars in two fields.

Özgül İnceoğlu; Joana Falcão Salles; L.S. van Overbeek; J. D. van Elsas

ABSTRACT Bacterial communities in the rhizosphere are dynamic and susceptible to changes in plant conditions. Among the bacteria, the betaproteobacteria play key roles in nutrient cycling and plant growth promotion, and hence the dynamics of their community structures in the rhizosphere should be investigated. Here, the effects of plant cultivar, growth stage, and soil type on the communities associated with potato cultivars Aveka, Aventra, Karnico, Modena, Premiere, and Désirée were assessed for two different fields containing sandy soil with either a high or low organic compound content. Thus, bacterial and betaproteobacterial PCR-denaturing gradient gel electrophoresis analyses were performed to analyze the effects of plant cultivar and growth on the rhizosphere community structure. The analyses showed that in both fields all cultivars had a rhizosphere effect on the total bacterial and betaproteobacterial communities. In addition, the plant growth stage strongly affected the betaproteobacterial communities in both fields. Moreover, the community structures were affected by cultivar, and cultivars differed in physiology, as reflected in their growth rates, root development, and estimated tuber starch contents. Analyses of betaproteobacterial clone libraries constructed for two selected cultivars (one cultivar that produced low-starch-content tubers and one cultivar that produced high-starch-content tubers), as well as bulk soil, revealed that the rhizospheres of the two cultivars selected for specific bacteria, including plant-growth-promoting bacteria, such as Variovorax and Achromobacter spp. In addition, quantitative PCR-based quantification of the Variovorax paradoxus-specific functional gene asfA (involved in desulfonation) indicated that there were clear potato rhizosphere effects on the abundance of this gene. Interestingly, both cultivar type and plant growth stage affected the community under some circumstances.


Journal of Microbiological Methods | 2003

Application of a novel Paenibacillus-specific PCR-DGGE method and sequence analysis to assess the diversity of Paenibacillus spp. in the maize rhizosphere.

Kátia R Araújo da Silva; Joana Falcão Salles; Lucy Seldin; Jan Dirk van Elsas

In this study, a Paenibacillus-specific PCR system, based on the specific primer PAEN515F in combination with bacterial primer R1401, was tested and used to amplify specific fragments of the 16S rRNA gene from rhizosphere DNA. The amplicons were used in a second (semi-nested) PCR for DGGE, in which bacterial primers F968GC and R1401 were used. The resulting products were separated into community fingerprints by DGGE. To assess the reliability of the method, the diversity of Paenibacillus species was evaluated on the basis of DNA extracted directly from the rhizospheres of four different cultivars of maize (Zea mays), i.e. CMS04, CMS11, CMS22 and CMS36, sown in two Brazilian field soils (Cerrado and Várzea). In addition, a clone library was generated from the PCR-generated 16S rDNA fragments, and selected clones were sequenced. The results of the bacterial community analyses showed, at the level of clone libraries, that considerable diversity among Paenibacillus spp. was present. The most dominantly found sequences clustered into 12 groups, each one potentially representing a species complex. Sequences closely affiliated with the P. macerans and P. azotofixans complexes were found in all samples, whereas other sequences were scarcer. Clones affiliated with the latter species complex were most abundant, representing 19% of all clones analysed. The Paenibacillus fingerprints generated via semi-nested PCR followed by DGGE showed a clear distinction between the maize plants grown in Cerrado versus Várzea soils. Thus, soil type, instead of maize cultivar type, was the overriding determinative factor that influenced the community structures of the Paenibacillus communities in the rhizospheres investigated. At a lower level (subcluster), there was a trend for maize cultivars CMS11 and CMS22 on the one hand, and CMS36 and CMS04 on the other hand, to cluster together, indicating that these respective pair of cultivars were similar in their Paenibacillus species composition. This trend was tentatively linked to the growth characteristics of these maize cultivars. These results clearly demonstrated the efficacy of the Paenibacillus-specific PCR-DGGE method in describing Paenibacillus species diversity in rhizosphere soils.


The ISME Journal | 2017

Where less may be more: how the rare biosphere pulls ecosystems strings

Alexandre Jousset; Christina Bienhold; Antonis Chatzinotas; Laure Gallien; Angélique Gobet; Viola Kurm; Kirsten Küsel; Matthias C. Rillig; Damian W. Rivett; Joana Falcão Salles; Marcel G. A. van der Heijden; Noha H. Youssef; Xiaowei Zhang; Zhong Wei; W. H. Gera Hol

Rare species are increasingly recognized as crucial, yet vulnerable components of Earth’s ecosystems. This is also true for microbial communities, which are typically composed of a high number of relatively rare species. Recent studies have demonstrated that rare species can have an over-proportional role in biogeochemical cycles and may be a hidden driver of microbiome function. In this review, we provide an ecological overview of the rare microbial biosphere, including causes of rarity and the impacts of rare species on ecosystem functioning. We discuss how rare species can have a preponderant role for local biodiversity and species turnover with rarity potentially bound to phylogenetically conserved features. Rare microbes may therefore be overlooked keystone species regulating the functioning of host-associated, terrestrial and aquatic environments. We conclude this review with recommendations to guide scientists interested in investigating this rapidly emerging research area.


The ISME Journal | 2014

Dynamics of bacterial community succession in a salt marsh chronosequence: evidences for temporal niche partitioning

Francisco Dini-Andreote; Michele de Cassia Pereira e Silva; Xavier Triadó-Margarit; Emilio O. Casamayor; Jan Dirk van Elsas; Joana Falcão Salles

The mechanisms underlying community assembly and promoting temporal succession are often overlooked in microbial ecology. Here, we studied an undisturbed salt marsh chronosequence, spanning over a century of ecosystem development, to understand bacterial succession in soil. We used 16S rRNA gene-based quantitative PCR to determine bacterial abundance and multitag 454 pyrosequencing for community composition and diversity analyses. Despite 10-fold lower 16S rRNA gene abundances, the initial stages of soil development held higher phylogenetic diversities than the soil at late succession. Temporal variations in phylogenetic β-diversity were greater at initial stages of soil development, possibly as a result of the great dynamism imposed by the daily influence of the tide, promoting high immigration rates. Allogenic succession of bacterial communities was mostly driven by shifts in the soil physical structure, as well as variations in pH and salinity, which collectively explained 84.5% of the variation concerning community assemblage. The community assembly data for each successional stage were integrated into a network co-occurrence analysis, revealing higher complexity at initial stages, coinciding with great dynamism in turnover and environmental variability. Contrary to a spatial niche-based perspective of bacterial community assembly, we suggest temporal niche partitioning as the dominant mechanism of assembly (promoting more phylotype co-occurrence) in the initial stages of succession, where continuous environmental change results in the existence of multiple niches over short periods of time.

Collaboration


Dive into the Joana Falcão Salles's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephanie D. Jurburg

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xavier Le Roux

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge