Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francisco Javier Herraiz is active.

Publication


Featured researches published by Francisco Javier Herraiz.


Journal of Agricultural and Food Chemistry | 2013

Diversity and relationships in key traits for functional and apparent quality in a collection of eggplant: fruit phenolics content, antioxidant activity, polyphenol oxidase activity, and browning.

Mariola Plazas; María Pilar López-Gresa; Santiago Vilanova; Cristina Torres; Maria Hurtado; Pietro Gramazio; Isabel Andújar; Francisco Javier Herraiz; José M. Bellés; Jaime Prohens

Eggplant (Solanum melongena) varieties with increased levels of phenolics in the fruit present enhanced functional quality, but may display greater fruit flesh browning. We evaluated 18 eggplant accessions for fruit total phenolics content, chlorogenic acid content, DPPH scavenging activity, polyphenol oxidase (PPO) activity, liquid extract browning, and fruit flesh browning. For all the traits we found a high diversity, with differences among accessions of up to 3.36-fold for fruit flesh browning. Variation in total content in phenolics and in chlorogenic acid content accounted only for 18.9% and 6.0% in the variation in fruit flesh browning, and PPO activity was not significantly correlated with fruit flesh browning. Liquid extract browning was highly correlated with chlorogenic acid content (r = 0.852). Principal components analysis (PCA) identified four groups of accessions with different profiles for the traits studied. Results suggest that it is possible to develop new eggplant varieties with improved functional and apparent quality.


Molecules | 2015

Breeding Vegetables with Increased Content in Bioactive Phenolic Acids

Prashant Kaushik; Isabel Andújar; Santiago Vilanova; Mariola Plazas; Pietro Gramazio; Francisco Javier Herraiz; Navjot Singh Brar; Jaime Prohens

Vegetables represent a major source of phenolic acids, powerful antioxidants characterized by an organic carboxylic acid function and which present multiple properties beneficial for human health. In consequence, developing new varieties with enhanced content in phenolic acids is an increasingly important breeding objective. Major phenolic acids present in vegetables are derivatives of cinnamic acid and to a lesser extent of benzoic acid. A large diversity in phenolic acids content has been found among cultivars and wild relatives of many vegetable crops. Identification of sources of variation for phenolic acids content can be accomplished by screening germplasm collections, but also through morphological characteristics and origin, as well as by evaluating mutations in key genes. Gene action estimates together with relatively high values for heritability indicate that selection for enhanced phenolic acids content will be efficient. Modern genomics and biotechnological strategies, such as QTL detection, candidate genes approaches and genetic transformation, are powerful tools for identification of genomic regions and genes with a key role in accumulation of phenolic acids in vegetables. However, genetically increasing the content in phenolic acids may also affect other traits important for the success of a variety. We anticipate that the combination of conventional and modern strategies will facilitate the development of a new generation of vegetable varieties with enhanced content in phenolic acids.


International Journal of Molecular Sciences | 2014

Reducing capacity, chlorogenic acid content and biological activity in a collection of scarlet (Solanum aethiopicum) and gboma (S. macrocarpon) eggplants

Mariola Plazas; Jaime Prohens; Amparo Noelia Cuñat; Santiago Vilanova; Pietro Gramazio; Francisco Javier Herraiz; Isabel Andújar

Scarlet (Solanum aethiopicum) and gboma (S. macrocarpon) eggplants are important vegetables in Sub-Saharan Africa. Few studies have been made on these crops regarding the diversity of phenolic content and their biological activity. We have studied the reducing activity, the chlorogenic acid and other phenolic acid contents in a collection of 56 accessions of scarlet eggplant, including the four cultivated groups (Aculeatum, Gilo, Kumba, Shum) and the weedy intermediate S. aethiopicum-S. anguivi types, as well as in eight accessions of gboma eggplant, including the cultivated S. macrocarpon and its wild ancestor, S. dasyphyllum. A sample of the accessions evaluated in this collection has been tested for inhibition of nitric oxide (NO) using macrophage cell cultures. The results show that there is a great diversity in both crops for reducing activity, chlorogenic acid content and chlorogenic acid peak area (% of total phenolic acids). Heritability (H2) for these traits was intermediate to high in both crops. In all samples, chlorogenic acid was the major phenolic acid and accounted for more than 50% of the chromatogram peak area. Considerable differences were found among and within groups for these traits, but the greatest values for total phenolics and chlorogenic acid content were found in S. dasyphyllum. In most groups, reducing activity was positively correlated (with values of up to 0.904 in the Aculeatum group) with chlorogenic acid content. Inhibition of NO was greatest in samples having a high chlorogenic acid content. The results show that both crops are a relevant source of chlorogenic acid and other phenolic acids. The high diversity found also indicates that there are good prospects for breeding new scarlet and gboma eggplant cultivars with improved content in phenolics and bioactive properties.


Euphytica | 2017

Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change

Jaime Prohens; Pietro Gramazio; Mariola Plazas; Hannes Dempewolf; Benjamin Kilian; María José Díez; Ana Fita; Francisco Javier Herraiz; Adrián Rodríguez-Burruezo; Salvador Soler; Sandra Knapp; Santiago Vilanova

The need to boost agricultural production in the coming decades in a climate change scenario requires new approaches for the development of new crop varieties that are more resilient and more efficient in the use of resources. Crop wild relatives (CWRs) are a source of variation for many traits of interest in breeding, in particular tolerance to abiotic and biotic stresses. However, their potential in plant breeding has largely remained unexploited. CWRs can make an effective contribution to broadening the genetic base of crops and to introgressing traits of interest, but their direct use by breeders in breeding programs is usually not feasible due to the presence of undesirable traits in CWRs (linkage drag) and frequent breeding barriers with the crop. Here we call for a new approach, which we tentatively call ‘introgressiomics’, which consists of mass scale development of plant materials and populations with introgressions from CWRs into the genetic background of crops. Introgressiomics is a form of pre-emptive breeding and can be focused, when looking for specific phenotypes, or un-focused, when it is aimed at creating highly diverse introgressed populations. Exploring germplasm collections and identifying adequate species and accessions from different genepools encompassing a high diversity, using different strategies like the creation of germplasm diversity sets, Focused identification of germplasm strategy (FIGS) or gap analysis, is a first step in introgressiomics. Interspecific hybridization and backcrossing is often a major barrier for introgressiomics, but a number of techniques can be used to potentially overcome these and produce introgression populations. The generation of chromosome substitution lines (CSLs), introgression lines (ILs), or multi-parent advanced inter-cross (MAGIC) populations by means of marker-assisted selection allows not only the genetic analysis of traits present in CWRs, but also developing genetically characterized elite materials that can be easily incorporated in breeding programs. Genomic tools, in particular high-throughput molecular markers, facilitate the characterization and development of introgressiomics populations, while new plant breeding techniques (NPBTs) can enhance the introgression and use of genes from CWRs in the genetic background of crops. An efficient use of introgressiomics populations requires moving the materials into breeding pipelines. In this respect public–private partnerships (PPPs) can contribute to an increased use of introgressed materials by breeders. We hope that the introgressiomics approach will contribute to the development of a new generation of cultivars with dramatically improved yield and performance that may allow coping with the environmental changes caused by climate change while at the same time contributing to a more efficient and sustainable agriculture.


Materials | 2016

Rapid biosynthesis of silver nanoparticles using pepino (Solanum muricatum) leaf extract and their cytotoxicity on HeLa cells

Mónica Gorbe; Ravishankar Bhat; Elena Aznar; Félix Sancenón; Maria Dolores Marcos; Francisco Javier Herraiz; Jaime Prohens; Abbaraju Venkataraman; Ramón Martínez-Máñez

Within nanotechnology, gold and silver nanostructures have unique physical, chemical, and electronic properties [1,2], which make them suitable for a number of applications. Moreover, biosynthetic methods are considered to be a safer alternative to conventional physicochemical procedures for both the environmental and biomedical applications, due to their eco-friendly nature and the avoidance of toxic chemicals in the synthesis. For this reason, employing bio routes in the synthesis of functionalized silver nanoparticles (FAgNP) have gained importance recently in this field. In the present study, we report the rapid synthesis of FAgNP through the extract of pepino (Solanum muricatum) leaves and employing microwave oven irradiation. The core-shell globular morphology and characterization of the different shaped and sized FAgNP, with a core of 20–50 nm of diameter is established using the UV-Visible spectroscopy (UV-vis), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and Zeta potential and dynamic light scanning (DLS) studies. Moreover, cytotoxic studies employing HeLa (human cervix carcinoma) cells were undertaken to understand FAgNP interactions with cells. HeLa cells showed significant dose dependent antiproliferative activity in the presence of FAgNP at relatively low concentrations. The calculated IC50 value was 37.5 µg/mL, similar to others obtained for FAgNPs against HeLa cells.


BMC Genomics | 2016

The first de novo transcriptome of pepino (Solanum muricatum): assembly, comprehensive analysis and comparison with the closely related species S. caripense, potato and tomato.

Francisco Javier Herraiz; José Blanca; Pello Ziarsolo; Pietro Gramazio; Mariola Plazas; Gregory J. Anderson; Jaime Prohens; Santiago Vilanova

BackgroundSolanum sect. Basarthrum is phylogenetically very close to potatoes (Solanum sect. Petota) and tomatoes (Solanum sect. Lycopersicon), two groups with great economic importance, and for which Solanum sect. Basarthrum represents a tertiary gene pool for breeding. This section includes the important regional cultigen, the pepino (Solanum muricatum), and several wild species. Among the wild species, S. caripense is prominent due to its major involvement in the origin of pepino and its wide geographical distribution. Despite the value of the pepino as an emerging crop, and the potential for gene transfer from both the pepino and S. caripense to potatoes and tomatoes, there has been virtually no genomic study of these species.ResultsUsing Illumina HiSeq 2000, RNA-Seq was performed with a pool of three tissues (young leaf, flowers in pre-anthesis and mature fruits) from S. muricatum and S. caripense, generating almost 111,000,000 reads among the two species. A high quality de novo transcriptome was assembled from S. muricatum clean reads resulting in 75,832 unigenes with an average length of 704 bp. These unigenes were functionally annotated based on similarity of public databases. We used Blast2GO, to conduct an exhaustive study of the gene ontology, including GO terms, EC numbers and KEGG pathways. Pepino unigenes were compared to both potato and tomato genomes in order to determine their estimated relative position, and to infer gene prediction models. Candidate genes related to traits of interest in other Solanaceae were evaluated by presence or absence and compared with S. caripense transcripts. In addition, by studying five genes, the phylogeny of pepino and five other members of the family, Solanaceae, were studied. The comparison of S. caripense reads against S. muricatum assembled transcripts resulted in thousands of intra- and interspecific nucleotide-level variants. In addition, more than 1000 SSRs were identified in the pepino transcriptome.ConclusionsThis study represents the first genomic resource for the pepino. We suggest that the data will be useful not only for improvement of the pepino, but also for potato and tomato breeding and gene transfer. The high quality of the transcriptome presented here also facilitates comparative studies in the genus Solanum. The accurate transcript annotation will enable us to figure out the gene function of particular traits of interest. The high number of markers (SSR and nucleotide-level variants) obtained will be useful for breeding programs, as well as studies of synteny, diversity evolution, and phylogeny.


International Journal of Molecular Sciences | 2016

Phenolic Profile and Biological Activities of the Pepino (Solanum muricatum) Fruit and Its Wild Relative S. caripense

Francisco Javier Herraiz; Débora Villaño; Mariola Plazas; Santiago Vilanova; Federico Ferreres; Jaime Prohens; Diego A. Moreno

The pepino (Solanum muricatum) is an edible and juicy fruit native to the Andean region which is becoming increasingly important. However, little information is available on its phenolic composition and bioactive properties. Four pepino varieties (37-A, El Camino, Puzol, and Valencia) and one accession (E-7) of its close wild relative S. caripense were characterized by HPLC-DAD-MSn/ESI. Twenty-four hydroxycinnamic acid derivatives were detected (5 to 16 compounds per variety or accession), with differences of more than two-fold for their total content among the materials studied. The major phenolics in the pepino varieties were chlorogenic acids and derivatives, while in S. caripense a caffeoyl-synapoyl-quinic acid was the major compound. The in vitro antioxidant capacity (DPPH (2,2-diphenyl-1-picrylhydrazyl hydrate), ORAC (oxygen radical absorbance capacity), and TRC (total reducing capacity) tests) was higher in S. caripense. Pepino and S. caripense extracts were not toxic for RAW 264.7 macrophage cells, and the raw extracts inhibited NO production of the lipopolysaccharide (LPS)-stimulated macrophages by 36% (El Camino) to 67% (37-A). No single variety ranked high simultaneously for hydroxycinnamic acids content, antioxidant activity and biological activity. We suggest the screening of large collections of germplasm or the use of complementary crosses between Puzol (high for hydroxycinnamic acids and biological activity) and S. caripense E-7 (high for antioxidant activity) to select and breed pepino varieties with enhanced properties.


Frontiers in Plant Science | 2017

Development and Genetic Characterization of Advanced Backcross Materials and An Introgression Line Population of Solanum incanum in a S. melongena Background

Pietro Gramazio; Jaime Prohens; Mariola Plazas; Giulio Mangino; Francisco Javier Herraiz; Santiago Vilanova

Advanced backcrosses (ABs) and introgression lines (ILs) of eggplant (Solanum melongena) can speed up genetics and genomics studies and breeding in this crop. We have developed the first full set of ABs and ILs in eggplant using Solanum incanum, a wild eggplant that has a relatively high tolerance to drought, as a donor parent. The development of these ABs and IL eggplant populations had a low efficiency in the early stages, because of the lack of molecular markers and genomic tools. However, this dramatically improved after performing genotyping-by-sequencing in the first round of selfing, followed by high-resolution-melting single nucleotide polymorphism genotyping in subsequent selection steps. A set of 73 selected ABs covered 99% of the S. incanum genome, while 25 fixed immortal ILs, each carrying a single introgressed fragment in homozygosis, altogether spanned 61.7% of the S. incanum genome. The introgressed size fragment in the ILs contained between 0.1 and 10.9% of the S. incanum genome, with a mean value of 4.3%. Sixty-eight candidate genes involved in drought tolerance were identified in the set of ILs. This first set of ABs and ILs of eggplant will be extremely useful for the genetic dissection of traits of interest for eggplant, and represents an elite material for introduction into the breeding pipelines for developing new eggplant cultivars adapted to the challenges posed by the climate-change scenario.


BMC Plant Biology | 2014

Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant

Pietro Gramazio; Jaime Prohens; Mariola Plazas; Isabel Andújar; Francisco Javier Herraiz; Elena Castillo; Sandra Knapp; Rachel S. Meyer; Santiago Vilanova


Notulae Botanicae Horti Agrobotanici Cluj-napoca | 2013

Breeding for Chlorogenic Acid Content in Eggplant: Interest and Prospects

Mariola Plazas; Isabel Andújar; Santiago Vilanova; Maria Hurtado; Pietro Gramazio; Francisco Javier Herraiz; Jaime Prohens

Collaboration


Dive into the Francisco Javier Herraiz's collaboration.

Top Co-Authors

Avatar

Jaime Prohens

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Mariola Plazas

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Santiago Vilanova

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Pietro Gramazio

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Isabel Andújar

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Maria Hurtado

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Adrián Rodríguez-Burruezo

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Ana Fita

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giulio Mangino

Polytechnic University of Valencia

View shared research outputs
Researchain Logo
Decentralizing Knowledge